Biodiv Sci ›› 2024, Vol. 32 ›› Issue (10): 24259. DOI: 10.17520/biods.2024259 cstr: 32101.14.biods.2024259
• Technology and Methodologies • Previous Articles Next Articles
Jiangjian Xie1,2,#(), Chen Shen1,#, Feiyu Zhang1, Zhishu Xiao3,*(
)(
)
Received:
2024-06-25
Accepted:
2024-08-24
Online:
2024-10-20
Published:
2024-09-26
Contact:
*E-mail: xiaozs@ioz.ac.cn
About author:
First author contact:#Co-first authors
Supported by:
Jiangjian Xie, Chen Shen, Feiyu Zhang, Zhishu Xiao. Cross-regional bird species recognition method integrating audio and ecological niche information[J]. Biodiv Sci, 2024, 32(10): 24259.
层名 Layer name | 输出尺寸 Output size | 每层参数 Layer parameters |
---|---|---|
输入 Input | 3 × 80 × 157 | - |
conv1_x | 64 × 40 × 79 | |
conv2_x | 64 × 20 × 40 | |
双重堆叠卷积模块 Double stacked convolutional module | ||
conv3_x | 128 × 10 × 20 | |
conv4_x | 256 × 5 × 10 | |
conv5_x | 512 × 3 × 5 | |
平均池化 Average pool | 512 × 1 × 1 | 自适应平均池化 Adaptive average pool |
输出 Output | 1 × 156 | 全连接层 Fully connected layer: Softmax |
Table 1 Structure and parameters of audio recognition model
层名 Layer name | 输出尺寸 Output size | 每层参数 Layer parameters |
---|---|---|
输入 Input | 3 × 80 × 157 | - |
conv1_x | 64 × 40 × 79 | |
conv2_x | 64 × 20 × 40 | |
双重堆叠卷积模块 Double stacked convolutional module | ||
conv3_x | 128 × 10 × 20 | |
conv4_x | 256 × 5 × 10 | |
conv5_x | 512 × 3 × 5 | |
平均池化 Average pool | 512 × 1 × 1 | 自适应平均池化 Adaptive average pool |
输出 Output | 1 × 156 | 全连接层 Fully connected layer: Softmax |
模型名称 Model name | Top-1准确率 Top-1 accuracy | Top-5准确率 Top-5 accuracy | 近种错误率 Near species error rate | 近属错误率 Near genus error rate | 近科错误率 Near family error rate |
---|---|---|---|---|---|
ResNet18 | 0.6140 | 0.8007 | 0.0531 | 0.0810 | 0.2518 |
NicheNet | 0.7432 | 0.9062 | 0.0220 | 0.0630 | 0.1719 |
Table 2 Comparison of different model performance
模型名称 Model name | Top-1准确率 Top-1 accuracy | Top-5准确率 Top-5 accuracy | 近种错误率 Near species error rate | 近属错误率 Near genus error rate | 近科错误率 Near family error rate |
---|---|---|---|---|---|
ResNet18 | 0.6140 | 0.8007 | 0.0531 | 0.0810 | 0.2518 |
NicheNet | 0.7432 | 0.9062 | 0.0220 | 0.0630 | 0.1719 |
Fig. 5 Comparison of the number of recognition errors of different models. ResNet18, Residual Neural Network 18. NicheNet, A recognition model integrating audio and niche information.
Fig. 6 Spectrograms and distribution prediction results of Cossypha caffra and Cercotrichas leucophrys. In figure c and d, blue to red indicates the predicted probability of the species’ presence from 0 to 1.
模型名称 Model name | 误识别样本数 Number of misidentified samples (%) | 近属误识别样本数 Number of near genus misidentified samples (%) | 误识别为白眉薮鸲样本数 Number of samples misidentified as Cercotrichas leucophrys (%) |
---|---|---|---|
ResNet18 | 283 (41.6%) | 124 (18.2%) | 68 (10.0%) |
NicheNet | 188 (27.6%) | 46 (6.8%) | 14 (2.1%) |
Table 3 Misidentification of Cossypha caffra
模型名称 Model name | 误识别样本数 Number of misidentified samples (%) | 近属误识别样本数 Number of near genus misidentified samples (%) | 误识别为白眉薮鸲样本数 Number of samples misidentified as Cercotrichas leucophrys (%) |
---|---|---|---|
ResNet18 | 283 (41.6%) | 124 (18.2%) | 68 (10.0%) |
NicheNet | 188 (27.6%) | 46 (6.8%) | 14 (2.1%) |
Fig. 7 Spectrograms and distribution prediction results of Delichon urbicum and Hirundo rustica. In figure c and d, blue to red indicates the predicted probability of the species’ presence from 0 to 1.
模型 名称 Model name | 误识别样本数 Number of misidentified samples (%) | 近属误识别样本数 Number of near genus misidentified samples (%) | 误识别为家燕样本数 Number of samples misidentified as Hirundo rustica (%) |
---|---|---|---|
ResNet18 | 328 (35.2%) | 104 (11.2%) | 56 (6.0%) |
NicheNet | 314 (33.7%) | 98 (10.5%) | 48 (5.1%) |
Table 4 Misidentification of Delichon urbicum
模型 名称 Model name | 误识别样本数 Number of misidentified samples (%) | 近属误识别样本数 Number of near genus misidentified samples (%) | 误识别为家燕样本数 Number of samples misidentified as Hirundo rustica (%) |
---|---|---|---|
ResNet18 | 328 (35.2%) | 104 (11.2%) | 56 (6.0%) |
NicheNet | 314 (33.7%) | 98 (10.5%) | 48 (5.1%) |
[1] | Bao YY, Li YK, Lin WY, Zhou ZQ, Xiao XB, Xie XY (2023) The current situation of horseshoe crabs in the offshore waters of northern South China Sea with analysis of the potential habitat distribution of juvenile Tachypleus tridentatus in Beibu Gulf. Biodiversity Science, 31, 22407. (in Chinese with English abstract) |
[鲍虞园, 李银康, 林吴颖, 周志琴, 肖晓波, 颉晓勇 (2023) 中国南海北部近海鲎资源调查及北部湾潮间带中华鲎幼鲎潜在栖息地评估. 生物多样性, 31, 22407.]
DOI |
|
[2] | Bold N, Zhang C, Akashi T (2019) Cross-domain deep feature combination for bird species classification with audio-visual data. IEICE Transactions on Information and Systems, E102, 2033-2042. |
[3] | Bota G, Manzano-Rubio R, Catalán L, Gómez-Catasús J, Pérez-Granados C (2023) Hearing to the unseen: AudioMoth and BirdNET as a cheap and easy method for monitoring cryptic bird species. Sensors, 23, 7176. |
[4] |
Cai JM, He PY, Yang ZP, Li LY, Zhao QJ, Pan F (2023) A deep feature fusion-based method for bird sound recognition and its interpretability analysis. Biodiversity Science, 31, 23087. (in Chinese with English abstract)
DOI |
[蔡建民, 何培宇, 杨智鹏, 李露莹, 赵启军, 潘帆 (2023) 基于深度特征融合的鸟鸣识别方法及其可解释性分析. 生物多样性, 31, 23087.]
DOI |
|
[5] | Chu G, Potetz B, Wang WJ, Howard A, Song Y, Brucher F, Leung T, Adam H (2019) Geo-aware networks for fine-grained recognition. In:2019 IEEE/CVF International Conference on Computer Vision Workshop, pp. 247-254. Seoul, Korea (South). |
[6] | Feng XJ, Mi XC, Xiao ZS, Cao L, Wu H, Ma KP (2019) Overview of Chinese biodiversity observation network (Sino BON). Bulletin of Chinese Academy of Sciences, 34, 1389-1398. (in Chinese with English abstract) |
[冯晓娟, 米湘成, 肖治术, 曹垒, 吴慧, 马克平 (2019) 中国生物多样性监测与研究网络建设及进展. 中国科学院院刊, 34, 1389-1398.] | |
[7] | Florentin J, Dutoit T, Verlinden O (2020) Detection and identification of European woodpeckers with deep convolutional neural networks. Ecological Informatics, 55, 101023. |
[8] | Jeantet L, Dufourq E (2023) Improving deep learning acoustic classifiers with contextual information for wildlife monitoring. Ecological Informatics, 77, 102256. |
[9] | Kahl S, Wood M, Eibl M, Klinck H (2021) BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61, 101236. |
[10] | Lin CT, Huang XW, Wang JN, Xi TY, Ji LQ (2021) Learning niche features to improve image-based species identification. Ecological Informatics, 61, 101217. |
[11] | Liu J, Zhang Y, Lv D, Lu J, Xie SS, Zi JL, Yin Y, Xu HF (2022) Birdsong classification based on ensemble multi scale convolutional neural network. Scientific Reports, 12, 8636. |
[12] | Mei JJ (2022) Study on the Patterns of Vocal Activity and Interspecific Relationship of the Cuculidae Species in Dabie Mountains. PhD dissertation, University of Science and Technology of China, Hefei. (in Chinese with English abstract) |
[梅金娟 (2022) 大别山区杜鹃科鸟类鸣叫活动模式与种间关系研究. 博士学位论文, 中国科学技术大学, 合肥.] | |
[13] | Morales G, Vargas V, Espejo D, Poblete V, Tomasevic JA, Otondo F, Navedo JG (2022) Method for passive acoustic monitoring of bird communities using UMAP and a deep neural network. Ecological Informatics, 72, 101909. |
[14] |
Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267.
DOI PMID |
[15] | Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. |
[16] | Thant ZM, Leimgruber P, Williams AC, Oo ZM, Røskaft E, May R (2023) Factors influencing the habitat suitability of wild Asian elephants and their implications for human- elephant conflict in Myanmar. Global Ecology and Conservation, 43, e02468. |
[17] | Wang HL, Xu YF, Yu Y, Lin YC, Ran JH (2022) An efficient model for a vast number of bird species identification based on acoustic features. Animals, 12, 2434. |
[18] |
Wu KY, Ruan WD, Zhou DF, Chen QC, Zhang CY, Pan XY, Yu S, Liu Y, Xiao RB (2023) Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring. Biodiversity Science, 31, 22370. (in Chinese with English abstract)
DOI |
[吴科毅, 阮文达, 周棣锋, 陈庆春, 张承云, 潘新园, 余上, 刘阳, 肖荣波 (2023) 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用. 生物多样性, 31, 22370.]
DOI |
|
[19] | Xie JJ, Yang J, Xing ZL, Zhang Z, Chen X (2020) Bird species recognition method based on multi-feature fusion. Journal of Applied Acoustics, 39, 199-206. (in Chinese with English abstract) |
[谢将剑, 杨俊, 邢照亮, 张卓, 陈新 (2020) 多特征融合的鸟类物种识别方法. 应用声学, 39, 199-206.] | |
[20] | Xie JJ, Zhong YJ, Zhang JG, Liu S, Ding CQ, Triantafyllopoulos A (2023) A review of automatic recognition technology for bird vocalizations in the deep learning era. Ecological Informatics, 73, 101927. |
[21] |
Xie ZF, Li DZ, Sun HX, Zhang AM (2023) Deep learning techniques for bird chirp recognition task. Biodiversity Science, 31, 22308. (in Chinese with English abstract)
DOI |
[谢卓钒, 李鼎昭, 孙海信, 张安民 (2023) 面向鸟鸣声识别任务的深度学习技术. 生物多样性, 31, 22308.]
DOI |
|
[22] | Xu J, Zhang XQ, Zhao CM, Geng ZL, Feng YR, Miao K, Li YJ (2024) Improving fine-grained image classification with multimodal information. IEEE Transactions on Multimedia, 26, 2082-2095. |
[23] | Yan N, Chen AB, Zhou GX, Zhang ZQ, Liu XY, Wang JW, Liu ZH, Chen WJ (2021) Birdsong classification based on multi-feature fusion. Multimedia Tools and Applications, 80, 36529-36547. |
[1] | Haotian Bai, Shang Yu, Xinyuan Pan, Jiale Ling, Juan Wu, Kaiqi Xie, Yang Liu, Xueye Chen. AI-assisted recognition for passive acoustic monitoring of birds in urban wetland parks [J]. Biodiv Sci, 2024, 32(8): 24188-. |
[2] | Yongcai Wang, Huawei Wan, Jixi Gao, Zhuowei Hu, Chenxi Sun, Na Lü, Zhiru Zhang. Identification of common native grassland plants in northern China using deep learning [J]. Biodiv Sci, 2024, 32(4): 23435-. |
[3] | Zezhou Hao, Chengyun Zhang, Le Li, Bingtao Gao, Wei Zeng, Chun Wang, Zixuan Wang, Wantao Huang, Yue Zhang, Nancai Pei, Zhishu Xiao. Applications of passive acoustic monitoring and evaluation in urban bird research [J]. Biodiv Sci, 2024, 32(10): 24123-. |
[4] | Qianrong Guo, Shufei Duan, Jie Xie, Xueyan Dong, Zhishu Xiao. Advances in bird sound annotation methods for passive acoustic monitoring [J]. Biodiv Sci, 2024, 32(10): 24313-. |
[5] | Lei Chen, Zhiyong Xu, Pukun Su, Xiaotian Lai, Zhao Zhao. Exploring the application of frequency-dependent acoustic diversity index in human-dominated areas [J]. Biodiv Sci, 2024, 32(10): 24286-. |
[6] | Yingying Liu, Lixin Gong, Hao Zeng, Jiang Feng, Yongjun Dong, Lei Wang, Tinglei Jiang. Application of passive acoustic monitoring in Chiropteran research [J]. Biodiv Sci, 2024, 32(10): 24233-. |
[7] | Wantao Huang, Zezhou Hao, Zixin Zhang, Zhishu Xiao, Chengyun Zhang. A comparison of bird sound recognition performance among acoustic recorders [J]. Biodiv Sci, 2024, 32(10): 24273-. |
[8] | Le Li, Chengyun Zhang, Nancai Pei, Bingtao Gao, Na Wang, Jiarui Li, Ruichen Wu, Zezhou Hao. Correlation analysis of urban green landscape patterns and bird diversity based on passive acoustic monitoring technology [J]. Biodiv Sci, 2024, 32(10): 24296-. |
[9] | Jianmin Cai, Peiyu He, Zhipeng Yang, Luying Li, Qijun Zhao, Fan Pan. A deep feature fusion-based method for bird sound recognition and its interpretability analysis [J]. Biodiv Sci, 2023, 31(7): 23087-. |
[10] | Yufei Huang, Chunyan Lu, Mingming Jia, Zili Wang, Yue Su, Yanlin Su. Plant species classification of coastal wetlands based on UAV images and object- oriented deep learning [J]. Biodiv Sci, 2023, 31(3): 22411-. |
[11] | Xiaohu Shen, Xiangyu Zhu, Hongfei Shi, Chuanzhi Wang. Research progress of birdsong recognition algorithms based on machine learning [J]. Biodiv Sci, 2023, 31(11): 23272-. |
[12] | Zhishu Xiao, Jianguo Cui, Daiping Wang, Zhitao Wang, Jinhong Luo, Jie Xie. Interdisciplinary development trends of contemporary bioacoustics and the opportunities for China [J]. Biodiv Sci, 2023, 31(1): 22423-. |
[13] | Haigang Ma, Penglai Fan. Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research [J]. Biodiv Sci, 2023, 31(1): 22374-. |
[14] | Keyi Wu, Wenda Ruan, Difeng Zhou, Qingchen Chen, Chengyun Zhang, Xinyuan Pan, Shang Yu, Yang Liu, Rongbo Xiao. Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring [J]. Biodiv Sci, 2023, 31(1): 22370-. |
[15] | Zhilin Li, Tianming Wang. Competition and coexistence between tigers and leopards in Asia [J]. Biodiv Sci, 2022, 30(9): 22271-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn