Biodiv Sci ›› 2024, Vol. 32 ›› Issue (3): 23319. DOI: 10.17520/biods.2023319
• Original Papers: Plant Diversity • Previous Articles Next Articles
Yaoqi Chen1, Jingjing Guo1,2, Guojun Cai1, Yili Ge1, Yu Liao1, Zheng Dong1, Hui Fu1,*()
Received:
2023-09-04
Accepted:
2024-01-25
Online:
2024-03-20
Published:
2024-03-06
Contact:
*E-mail: huifu367@163.com
Yaoqi Chen, Jingjing Guo, Guojun Cai, Yili Ge, Yu Liao, Zheng Dong, Hui Fu. Evolution characteristics of submerged macrophyte community diversity in the middle and lower reaches of the Yangtze River in the past seventy years (1954-2021)[J]. Biodiv Sci, 2024, 32(3): 23319.
编号 No. | 科 Family | 物种 Species | 编号 No. | 科 Family | 物种 Species |
---|---|---|---|---|---|
01 | 眼子菜科 Potamogetonaceae | 菹草 Potamogeton crispus | 21 | 水鳖科 Hydrocharitaceae | 伊乐藻 Elodea nuttallii |
02 | 眼子菜科 Potamogetonaceae | 鸡冠眼子菜 P. cristatus | 22 | 水鳖科 Hydrocharitaceae | 光果黑藻 Hydrilla roxburghii |
03 | 眼子菜科 Potamogetonaceae | 光叶眼子菜 P. lucens | 23 | 水鳖科 Hydrocharitaceae | 轮叶黑藻 H. verticillata |
04 | 眼子菜科 Potamogetonaceae | 微齿眼子菜 P. maackianus | 24 | 水鳖科 Hydrocharitaceae | 弯果茨藻 Najas ancistrocarpa |
05 | 眼子菜科 Potamogetonaceae | 八蕊眼子菜 P. octandrus | 25 | 水鳖科 Hydrocharitaceae | 多孔茨藻 N. foveolata |
06 | 眼子菜科 Potamogetonaceae | 尖叶眼子菜 P. oxyphyllus | 26 | 水鳖科 Hydrocharitaceae | 纤细茨藻 N. gracillima |
07 | 眼子菜科 Potamogetonaceae | 蓼叶眼子菜 P. polygonifolius | 27 | 水鳖科 Hydrocharitaceae | 草茨藻 N. graminea |
08 | 眼子菜科 Potamogetonaceae | 小眼子菜 P. pusillus | 28 | 水鳖科 Hydrocharitaceae | 大茨藻 N. marina |
09 | 眼子菜科 Potamogetonaceae | 竹叶眼子菜 P. wrightii | 29 | 水鳖科 Hydrocharitaceae | 小茨藻 N. minor |
10 | 眼子菜科 Potamogetonaceae | 丝叶眼子菜 Stuckenia filiformis | 30 | 水鳖科 Hydrocharitaceae | 澳古茨藻 N. oguraensis |
11 | 眼子菜科 Potamogetonaceae | 篦齿眼子菜 S. pectinata | 31 | 水鳖科 Hydrocharitaceae | 东方茨藻 N. orientalis |
12 | 轮藻科 Characeae | 轮藻 Chara vulgaris | 32 | 水鳖科 Hydrocharitaceae | 龙舌草 Ottelia alismoides |
13 | 小二仙草科 Haloragaceae | 东方狐尾藻 Myriophyllum oguraense | 33 | 水鳖科 Hydrocharitaceae | 密刺苦草 Vallisneria denseserrulata |
14 | 小二仙草科 Haloragaceae | 穗状狐尾藻 M. spicatum | 34 | 水鳖科 Hydrocharitaceae | 苦草 V. natans |
15 | 小二仙草科 Haloragaceae | 乌苏里狐尾藻 M. ussuriense | 35 | 水鳖科 Hydrocharitaceae | 刺苦草 V. spinulosa |
16 | 小二仙草科 Haloragaceae | 狐尾藻 M. verticillatum | 36 | 毛茛科 Ranunculaceae | 水毛茛 Batrachium bungei |
17 | 金鱼藻科 Ceratophyllaceae | 金鱼藻 Ceratophyllum demersum | 37 | 毛茛科 Ranunculaceae | 毛柄水毛茛 B. trichophyllum |
18 | 金鱼藻科 Ceratophyllaceae | 粗糙金鱼藻 C. muricatum kossinskyi | 38 | 狸藻科 Lentibulariaceae | 黄花狸藻 Utricularia aurea |
19 | 金鱼藻科 Ceratophyllaceae | 五刺金鱼藻 C. oryzetorum | 39 | 狸藻科 Lentibulariaceae | 少花狸藻 U. gibba |
20 | 水鳖科 Hydrocharitaceae | 水筛 Blyxa japonica |
Table 1 Species list of submerged macrophytes appearing in 17 lakes in the middle and lower reaches of the Yangtze River
编号 No. | 科 Family | 物种 Species | 编号 No. | 科 Family | 物种 Species |
---|---|---|---|---|---|
01 | 眼子菜科 Potamogetonaceae | 菹草 Potamogeton crispus | 21 | 水鳖科 Hydrocharitaceae | 伊乐藻 Elodea nuttallii |
02 | 眼子菜科 Potamogetonaceae | 鸡冠眼子菜 P. cristatus | 22 | 水鳖科 Hydrocharitaceae | 光果黑藻 Hydrilla roxburghii |
03 | 眼子菜科 Potamogetonaceae | 光叶眼子菜 P. lucens | 23 | 水鳖科 Hydrocharitaceae | 轮叶黑藻 H. verticillata |
04 | 眼子菜科 Potamogetonaceae | 微齿眼子菜 P. maackianus | 24 | 水鳖科 Hydrocharitaceae | 弯果茨藻 Najas ancistrocarpa |
05 | 眼子菜科 Potamogetonaceae | 八蕊眼子菜 P. octandrus | 25 | 水鳖科 Hydrocharitaceae | 多孔茨藻 N. foveolata |
06 | 眼子菜科 Potamogetonaceae | 尖叶眼子菜 P. oxyphyllus | 26 | 水鳖科 Hydrocharitaceae | 纤细茨藻 N. gracillima |
07 | 眼子菜科 Potamogetonaceae | 蓼叶眼子菜 P. polygonifolius | 27 | 水鳖科 Hydrocharitaceae | 草茨藻 N. graminea |
08 | 眼子菜科 Potamogetonaceae | 小眼子菜 P. pusillus | 28 | 水鳖科 Hydrocharitaceae | 大茨藻 N. marina |
09 | 眼子菜科 Potamogetonaceae | 竹叶眼子菜 P. wrightii | 29 | 水鳖科 Hydrocharitaceae | 小茨藻 N. minor |
10 | 眼子菜科 Potamogetonaceae | 丝叶眼子菜 Stuckenia filiformis | 30 | 水鳖科 Hydrocharitaceae | 澳古茨藻 N. oguraensis |
11 | 眼子菜科 Potamogetonaceae | 篦齿眼子菜 S. pectinata | 31 | 水鳖科 Hydrocharitaceae | 东方茨藻 N. orientalis |
12 | 轮藻科 Characeae | 轮藻 Chara vulgaris | 32 | 水鳖科 Hydrocharitaceae | 龙舌草 Ottelia alismoides |
13 | 小二仙草科 Haloragaceae | 东方狐尾藻 Myriophyllum oguraense | 33 | 水鳖科 Hydrocharitaceae | 密刺苦草 Vallisneria denseserrulata |
14 | 小二仙草科 Haloragaceae | 穗状狐尾藻 M. spicatum | 34 | 水鳖科 Hydrocharitaceae | 苦草 V. natans |
15 | 小二仙草科 Haloragaceae | 乌苏里狐尾藻 M. ussuriense | 35 | 水鳖科 Hydrocharitaceae | 刺苦草 V. spinulosa |
16 | 小二仙草科 Haloragaceae | 狐尾藻 M. verticillatum | 36 | 毛茛科 Ranunculaceae | 水毛茛 Batrachium bungei |
17 | 金鱼藻科 Ceratophyllaceae | 金鱼藻 Ceratophyllum demersum | 37 | 毛茛科 Ranunculaceae | 毛柄水毛茛 B. trichophyllum |
18 | 金鱼藻科 Ceratophyllaceae | 粗糙金鱼藻 C. muricatum kossinskyi | 38 | 狸藻科 Lentibulariaceae | 黄花狸藻 Utricularia aurea |
19 | 金鱼藻科 Ceratophyllaceae | 五刺金鱼藻 C. oryzetorum | 39 | 狸藻科 Lentibulariaceae | 少花狸藻 U. gibba |
20 | 水鳖科 Hydrocharitaceae | 水筛 Blyxa japonica |
Fig. 1 Shannon-Wiener diversity index of submerged macrophytes in 17 lakes in the middle and lower reaches of the Yangtze River at different periods. P1, 1954-1980; P2, 1981-2006; P3, 2007-2021. BAH, Baoan Lake; DTH, Dongting Lake; FTH, Futou Lake; GCH, Gucheng Lake; HZXH, Hangzhou West Lake; CH, Chaohu Lake; HZH, Hongze Lake; CDH, Changdang Lake; CHH, Changhu Lake; LGH, Longgan Lake; GH, Gehu Lake; HH, Honghu Lake; LZH, Liangzi Lake; PYH, Poyang Lake; SJH, Shengjin Lake; TH, Taihu Lake; WHDH, Wuhan East Lake.
Fig. 2 Simpson dominance index of submerged macrophytes in 17 lakes in the middle and lower reaches of the Yangtze River at different periods. Abbreviations can be found in Fig. 1.
Fig. 3 Species richness index of submerged macrophytes in 17 lakes in the middle and lower reaches of the Yangtze River at different periods. Abbreviations can be found in Fig. 1.
Fig. 4 Distribution of two components of βtemporal-diversity (nestedness and turnover) in submerged macrophytes in 17 lakes in the middle and lower reaches of the Yangtze River at different periods. Abbreviations can be found in Fig. 1.
Fig. 5 Difference of α-diversity index of submerged macrophytes in 17 lakes in the middle and lower reaches of the Yangtze River at different periods. Different lowercase letters indicate significant differences. Number of lakes in different periods: P1 = 8, P2 = 17, P3 = 17.
Fig. 6 Difference of βspatial-diversity index of submerged macrophytes in 17 lakes in the middle and lower reaches of the Yangtze River at different periods. Different lowercase letters indicate significant differences. Number of lakes in different periods: P1 = 8, P2 = 17, P3 = 17.
Fig. 7 Differences in environmental heterogeneity among 17 lakes in the middle and lower reaches of the Yangtze River during different periods. Different lowercase letters indicate significant differences. Number of lakes in different periods: P1 = 4, P2 = 16, P3 = 17.
Fig. 8 Relationship between α-diversity of submerged macrophytes and environmental heterogeneity in 17 lakes in the middle and lower reaches of the Yangtze River
Fig. 9 Relationship between βtemporal-diversity of submerged macrophytes and environmental heterogeneity in 17 lakes in the middle and lower reaches of the Yangtze River
[1] | Alahuhta J, Kosten S, Akasaka M, Auderset D, Azzella MM, Bolpagni R, Bove CP, Chambers PA, Chappuis E, Clayton J, de Winton M, Ecke F, Gacia E, Gecheva G, Grillas P, Hauxwell J, Hellsten S, Hjort J, Hoyer MV, Ilg C, Kolada A, Kuoppala M, Lauridsen T, Li EH, Lukács BA, Mjelde M, Mikulyuk A, Mormul RP, Nishihiro J, Oertli B, Rhazi L, Rhazi M, Sass L, Schranz C, Søndergaard M, Yamanouchi T, Yu Q, Wang HJ, Willby N, Zhang XK, Heino J (2017) Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 44, 1758-1769. |
[2] | Bakker ES, Sarneel JM, Gulati RD, Liu ZW, van Donk E (2013) Restoring macrophyte diversity in shallow temperate lakes: Biotic versus abiotic constraints. Hydrobiologia, 710, 23-37. |
[3] | Bennion H, Sayer CD, Clarke SJ, Davidson TA, Rose NL, Goldsmith B, Rawcliffe R, Burgess A, Clarke G, Turner S, Wiik E (2018) Sedimentary macrofossil records reveal ecological change in English lakes: Implications for conservation. Journal of Paleolimnology, 60, 329-348. |
[4] |
Bertuzzi T, Pires MM, Maltchik L (2019) Drivers of the beta diversity of aquatic plant communities along a latitudinal gradient in southern Brazilian coastal ponds. Journal of Vegetation Science, 30, 281-290.
DOI |
[5] | Cai XW, Li W, Fan HR, Fang T, Li W, Chang FY, Liu JS, Liao CS (2021) Roles of fish assemblage regulation on ecological restoration in a shallow lake: A case study from the Kuilei Lake, China. Journal of Fishery Sciences of China, 28, 737-742. (in Chinese with English abstract) |
[ 蔡杏伟, 李为, 樊厚瑞, 方涛, 李伟, 常锋毅, 刘家寿, 廖传松 (2021) 鱼类群落调控在浅水湖泊生态修复中的作用: 以傀儡湖为例. 中国水产科学, 28, 737-742.] | |
[6] | Cao Y, Liu Y, Ndirangu L, Li W, Xian L, Jiang HS (2019) The analysis of leaf traits of eight Ottelia populations and their potential ecosystem functions in karst freshwaters in China. Frontiers in Plant Science, 9, 1938. |
[7] | Cardoso P, Rigal F, Carvalho JC, Fortelius M, Borges PAV, Podani J, Schmera D (2014) Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. Journal of Biogeography, 41, 749-761. |
[8] | Castaño-Sánchez A, Valencia L, Serrano JM, Delgado JA (2018) Species introduction and taxonomic homogenization of Spanish freshwater fish fauna in relation to basin size, species richness and dam construction. Journal of Freshwater Ecology, 33, 347-360. |
[9] |
Cui LJ, Gao CJ, Zhao XS, Ma QF, Zhang MY, Li W, Song HT, Wang YF, Li SN, Zhang Y (2013) Dynamics of the lakes in the middle and lower reaches of the Yangtze River Basin, China, since late nineteenth century. Environmental Monitoring and Assessment, 185, 4005-4018.
DOI PMID |
[10] | Declerck SAJ, Coronel JS, Legendre P, Brendonck L (2011) Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography, 34, 296-305. |
[11] | Ding XQ, Jia YT, Yang JY, An YJ, Yang S (2010) Seed bank in aquaculture area of Honghu Lake and the strategy of aquatic vegetation restoration. Journal of Huazhong Normal University (Natural Sciences), 44, 296-300. (in Chinese with English abstract) |
[ 丁小青, 贾延亭, 杨娇艳, 安彦杰, 杨劭 (2010) 洪湖养殖区水生植物种子库现状及水生植被恢复策略研究. 华中师范大学学报(自然科学版), 44, 296-300.] | |
[12] | Downing AL, Leibold MA (2002) Ecosystem consequences of species richness and composition in pond food webs. Nature, 416, 837-841. |
[13] | Fang JY, Wang ZH, Zhao SQ, Li YK, Tang ZY, Yu D, Ni LY, Liu HZ, Xie P, Da LJ, Li ZQ, Zheng CY (2006) Biodiversity changes in the lakes of the Central Yangtze. Frontiers in Ecology and the Environment, 4, 369-377. |
[14] | Flower RJ, Juggins S, Battarbee RW (1997) Matching diatom assemblages in lake sediment cores and modern surface sediment samples: The implications for lake conservation and restoration with special reference to acidified systems. Hydrobiologia, 344, 27-40. |
[15] | Fu H, Yuan GX, Jeppesen E, Ge DB, Li W, Zou DS, Huang ZR, Wu AP, Liu QL (2019) Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Science of the Total Environment, 687, 206-217. |
[16] |
Fu H, Zhong JY, Fang SW, Hu JM, Guo CJ, Lou Q, Yuan GX, Dai TT, Li ZQ, Zhang M, Li W, Xu J, Cao T (2017) Scale-dependent changes in the functional diversity of macrophytes in subtropical freshwater lakes in South China. Scientific Reports, 7, 8294.
DOI PMID |
[17] | Fu H, Zhong JY, Yuan GX, Xie P, Guo LG, Zhang XL, Xu J, Li Z, Li W, Zhang M, Cao T, Ni LY (2014) Trait-based community assembly of aquatic macrophytes along a water depth gradient in a freshwater lake. Freshwater Biology, 59, 2462-2471. |
[18] | Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK, Klein AM, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter I, Weiner CN, Weisser W, Werner M, Tscharntke T, Westphal C (2015) Landscape simplification filters species traits and drives biotic homogenization. Nature Communications, 6, 8568. |
[19] | García-Girón J, Lindholm M, Heino J, Toivonen H, Alahuhta J (2022) Historical contingency via priority effects counteracts environmental change on metacommunity dynamics across decades. Limnology and Oceanography, 67, S38-S53. |
[20] |
Gianuca AT, Declerck SAJ, Lemmens P, De Meester L, (2017) Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology, 98, 525-533.
DOI PMID |
[21] | Guo KD, Zhang XB, Liu PZ, Lei GC, Lü C, Zeng XF, Zeng WK (2020) The response of submerged plants to different environmental factors and hydrologic regime in West Lake Dongting. Journal of Lake Sciences, 32, 1736-1748. (in Chinese with English abstract) |
[ 郭凯迪, 张晓波, 刘培中, 雷光春, 吕偲, 曾喜凡, 曾伟坤 (2020) 西洞庭湖沉水植物分布格局对环境因子及水文情势差异的响应. 湖泊科学, 32, 1736-1748.] | |
[22] | Gutiérrez-Cánovas C, Millán A, Velasco J, Vaughan IP, Ormerod SJ (2013) Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography, 22, 796-805. |
[23] | Hill MJ, Heino J, Thornhill I, Ryves DB, Wood PJ (2017) Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos, 126, 1575-1585. |
[24] |
Hillebrand H, Blenckner T (2002) Regional and local impact on species diversity—From pattern to processes. Oecologia, 132, 479-491.
DOI PMID |
[25] | Hu Y, Qian DX, Wang LF (2023) Research progress on the remediation effect of submerged plants on water pollution. South China Agriculture, 17(7), 82-85, 89. (in Chinese) |
[ 胡昱, 钱德雪, 王利芬 (2023) 沉水植物对水体污染的修复效果研究进展. 南方农业, 17(7), 82-85, 89.] | |
[26] | Huang FF, Zhang K, Huang SX, Lin Q (2021) Patterns and trajectories of macrophyte change in East China’s shallow lakes over the past one century. Scientia Sinica (Terrae), 64, 1735-1745. |
[27] | Jia YY, Tang XL, Tang FL, Yang Y, Ma K (2020) Research on human activity intensity and its impact on wetland landscape pattern in the middle and lower reaches of the Yangtze River Basin. Resources and Environment in the Yangtze Basin, 29, 950-963. (in Chinese with English abstract) |
[ 贾艳艳, 唐晓岚, 唐芳林, 杨阳, 马坤 (2020) 长江中下游流域人类活动强度及其对湿地景观格局影响研究. 长江流域资源与环境, 29, 950-963.] | |
[28] | Kong XH, Xiao LL, Su HJ, Wu Y, Zhang XL, Li ZQ (2015) Status of aquatic plants and its relationship with water environment factors in the lakes along the lower reaches of the Yangtze River. Journal of Lake Sciences, 27, 385-391. (in Chinese with English abstract) |
[ 孔祥虹, 肖兰兰, 苏豪杰, 吴耀, 张霄林, 李中强 (2015) 长江下游湖泊水生植物现状及与水环境因子的关系. 湖泊科学, 27, 385-391.] | |
[29] | Krynak EM, Lindo Z, Yates AG (2019) Patterns and drivers of stream benthic macroinvertebrate beta diversity in an agricultural landscape. Hydrobiologia, 837, 61-75. |
[30] |
Kuglerová L, Jansson R, Sponseller RA, Laudon H, Malm-Renöfält B (2015) Local and regional processes determine plant species richness in a river-network metacommunity. Ecology, 96, 381-391.
PMID |
[31] | Larsen S, Karaus U, Claret C, Sporka F, Hamerlík L, Tockner K (2019) Flooding and hydrologic connectivity modulate community assembly in a dynamic river-floodplain ecosystem. PLoS ONE, 14, e0213227. |
[32] | Lee DY, Lee DS, Park YS (2023) Taxonomic and functional diversity of benthic macroinvertebrate assemblages in reservoirs of South Korea. International Journal of Environmental Research and Public Health, 20, 673. |
[33] | Li MJ, Wu KY, Meng FF, Shen J, Liu YQ, Xiao NW, Wang JJ (2020) Beta diversity of stream bacteria in Hengduan Mountains: The effects of climatic and environmental variables. Biodiversity Science, 28, 1570-1580. (in Chinese with English abstract) |
[ 李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军 (2020) 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应. 生物多样性, 28, 1570-1580.] | |
[34] | Li N, Yang L, Deng XW, Wang ZX, Li ZQ (2018) Aquatic plant diversity in relation to lake morphology in the middle and lower reaches of the Yangtze River. Plant Science Journal, 36, 65-72. (in Chinese with English abstract) |
[ 李娜, 杨磊, 邓绪伟, 汪正祥, 李中强 (2018) 湖泊形态与水生植物多样性关系——以长江中下游湖群典型湖泊为例. 植物科学学报, 36, 65-72.] | |
[35] | Lin H, Yin WH, Dong YB, Li B (2019) Advances in response of submerged macrophytes to stress. Environmental Science and Technology, 32(1), 63-67, 73. (in Chinese with English abstract) |
[ 林海, 殷文慧, 董颖博, 李冰 (2019) 沉水植物对逆境胁迫的响应研究进展. 环境科技, 32(1), 63-67, 73.] | |
[36] | Liu J, Yang XD, Wang SM (2006) Study on the nutrient evolution and its controlling factors of Longgan Lake for the last 200 years. Science in China Series D, 49, 193-202. |
[37] | Liu Y (2021) Combined Effects of Nutrient Enrichment and Herbivory on Growth of Submerged Macrophytes. PhD dissertation, Nanchang University, Nanchang. (in Chinese with English abstract) |
[ 刘颖 (2021) 富营养化与牧食作用对沉水植物生长的复合影响研究. 博士学位论文, 南昌大学, 南昌.] | |
[38] | Liu Y, Fu WL Cao Y, Li W (2017) Study on the functional traits of submerged macrophytes. Plant Science Journal, 35, 444-451. (in Chinese with English abstract) |
[ 刘洋, 付文龙, 操瑜, 李伟 (2017) 沉水植物功能性状研究的思考. 植物科学学报, 35, 444-451.] | |
[39] | Lu J, Wang HB, Pan M, Xia J, Xing W, Liu GH (2012) Using sediment seed banks and historical vegetation change data to develop restoration criteria for a eutrophic lake in China. Ecological Engineering, 39, 95-103. |
[40] | Mäemets H, Palmik K, Haldna M (2016) Eutrophication-driven spatial and temporal changes in macrophyte diversity in Lake Peipsi. Proceedings of the Estonian Academy of Sciences, 65, 394-407. |
[41] | McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30, 104-113. |
[42] | Moss B, Kosten S, Meerhoff M, Battarbee RW (2011) Allied attack: Climate change and eutrophication. Inland Waters, 1, 101-105. |
[43] | O’Hare MT, Aguiar FC, Asaeda T, Bakker ES, Chambers PA, Clayton JS, Elger A, Ferreira TM, Gross EM, Gunn IDM, Gurnell AM, Hellsten S, Hofstra DE, Li W, Mohr S, Puijalon S, Szoszkiewicz K, Willby NJ, Wood KA (2018) Plants in aquatic ecosystems: Current trends and future directions. Hydrobiologia, 812, 1-11. |
[44] | Olden JD, Rooney TP (2006) On defining and quantifying biotic homogenization. Global Ecology and Biogeography, 15, 113-120. |
[45] | Phillips G, Willby N, Moss B (2016) Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany, 135, 37-45. |
[46] | Pozzobom UM, Landeiro VL, da Silva Brito MT, Alahuhta J, Heino J (2021) Multiple facets of macrophyte beta diversity are shaped by environmental factors, directional spatial processes, and connectivity across tropical floodplain lakes in the dry season. Hydrobiologia, 848, 3587-3602. |
[47] | Qin BQ (2020) Shallow lake limnology and control of eutrophication in Lake Taihu. Journal of Lake Sciences, 32, 1229-1243. (in Chinese with English abstract) |
[ 秦伯强 (2020) 浅水湖泊湖沼学与太湖富营养化控制研究. 湖泊科学, 32, 1229-1243.] | |
[48] | Qiu DR, Wu ZB (1997) On the decline and restoration of submerged vegetation in eutrophic shallow lakes. Journal of Lake Sciences, 9, 82-88. (in Chinese with English abstract) |
[ 邱东茹, 吴振斌 (1997) 富营养化浅水湖泊沉水水生植被的衰退与恢复. 湖泊科学, 9, 82-88.] | |
[49] | Sachse R, Petzoldt T, Blumstock M, Moreira S, Pätzig M, Rücker J, Janse JH, Mooij WM, Hilt S (2014) Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality. Environmental Modelling and Software, 61, 410-423. |
[50] | Salgado J, Sayer CD, Brooks SJ, Davidson TA, Goldsmith B, Patmore IR, Baker AG, Okamura B (2018) Eutrophication homogenizes shallow lake macrophyte assemblages over space and time. Ecosphere, 9, e02406. |
[51] | Sayer CD, Burgess A, Kari K, Davidson TA, Peglar S, Yang HD, Rose NL (2010) Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: Implications for the stability of macrophyte- dominance. Freshwater Biology, 55, 565-583. |
[52] | Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8, 275-279. |
[53] | Scheffer M, Szabó S, Gragnani A, Van Nes EH, Rinaldi S, Kautsky N, Norberg J, Roijackers RMM, Franken RJM (2003) Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences, USA, 100, 4040-4045. |
[54] | Su GH, Xu J, Akasaka M, Molinos JG (2015) Human impacts on functional and taxonomic homogenization of plateau fish assemblages in Yunnan, China. Global Ecology and Conservation, 4, 470-478. |
[55] | Tan FX, Luo JB, Gong SS, Zhou WB, Xiang MM, Meng JX, Chai Y (2019) Effects of removal of the breeding seine on aquatic plant diversity in Yuanxinhu area of Chang Lake. Hubei Agricultural Sciences, 58(21), 92-96. (in Chinese with English abstract) |
[ 谭凤霞, 罗静波, 龚森森, 周文博, 向苗苗, 孟建雪, 柴毅 (2019) 养殖围网拆除对长湖圆心湖区水生植物多样性的影响. 湖北农业科学, 58(21), 92-96.] | |
[56] | Tang XD, Zhang Y (2023) Water quality regulation and submerged plant restoration in water ecological remediation. Environmental Ecology, 5(6), 88-92, 98. (in Chinese with English abstract) |
[ 唐旭东, 张扬 (2023) 水生态修复中水质调控与沉水植物恢复探析. 环境生态学, 5(6), 88-92, 98.] | |
[57] | Tian Q, Wang PF, Ouyang P, Wang C, Zhang WM (2009) Purification of eutrophic water with five submerged hydrophytes. Water Resources Protection, 25(1), 14-17. (in Chinese with English abstract) |
[ 田琦, 王沛芳, 欧阳萍, 王超, 张文明 (2009) 5种沉水植物对富营养化水体的净化能力研究. 水资源保护, 25(1), 14-17.] | |
[58] | Villéger S, Grenouillet G, Brosse S (2014) Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Global Ecology and Biogeography, 23, 1450-1460. |
[59] | Wang JL (2023) Study on the effect of aquatic phytoremediation on the aquatic ecological environment of Chaohu Lake. Scientific and Technological Innovation, (5), 77-80. (in Chinese with English abstract) |
[ 王锦龙 (2023) 水生植物修复对巢湖水生态环境的影响研究. 科学技术创新, (5), 77-80.] | |
[60] | Wang XP, Wang YB, Yang GJ, Qin BQ, Yang HW (2016) The effects of different fish species on growth of submerged macrophytes. Journal of Lake Sciences, 28, 1354-1360. (in Chinese with English abstract) |
[ 王晓平, 王玉兵, 杨桂军, 秦伯强, 杨宏伟 (2016) 不同鱼类对沉水植物生长的影响. 湖泊科学, 28, 1354-1360.] | |
[61] | Wu NC, Wang YC, Wang YX, Sun XM, Faber C, Fohrer N (2022) Environment regimes play an important role in structuring trait- and taxonomy-based temporal beta diversity of riverine diatoms. Journal of Ecology, 110, 1442-1454. |
[62] | Wu YH, Liu EF, Bing HJ, Yang XD, Xue B, Xia WL (2010) Geochronology of recent lake sediments from Longgan Lake, middle reach of the Yangtze River, influenced by disturbance of human activities. Science China: Earth Science, 40, 751-757. (in Chinese) |
[ 吴艳宏, 刘恩峰, 邴海健, 羊向东, 薛滨, 夏威岚 (2010) 人类活动影响下的长江中游龙感湖近代湖泊沉积年代序列. 中国科学: 地球科学, 40, 751-757.] | |
[63] | Wu ZG, Xiong W, Hou HW (2019) Biodiversity pattern and conservation of aquatic vascular plants in the Yangtze River Basin, China. Acta Hydrobiologica Sinica, 43(Suppl.), 27-41. (in Chinese with English abstract) |
[ 吴志刚, 熊文, 侯宏伟 (2019) 长江流域水生植物多样性格局与保护. 水生生物学报, 43(增刊), 27-41.] | |
[64] | Yao SM, Zhang YC, Chai ZH, Jin ZW, Qu G (2022) Current status and measures of conservation and restoration of rivers and lakes in the lower reaches of the Yangtze River. Technology and Economy of Changjiang, 6(6), 1-10. (in Chinese with English abstract) |
[ 姚仕明, 章运超, 柴朝晖, 金中武, 渠庚 (2022) 长江下游河湖保护与修复状况及对策建议. 长江技术经济, 6(6), 1-10.] | |
[65] | Yuan LY (2007) Study on Effects of Environmental Factors on the Life-history Strategies of Submerged Macrophytes. PhD dissertation, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan. (in Chinese with English abstract) |
[ 袁龙义 (2007) 环境因子对沉水植物生活史对策的影响研究. 博士学位论文, 中国科学院武汉植物园, 武汉.] | |
[66] |
Zhang M, Molinos JG, Zhang XL, Xu J (2018) Functional and taxonomic differentiation of macrophyte assemblages across the Yangtze River floodplain under human impacts. Frontiers in Plant Science, 9, 387.
DOI PMID |
[67] |
Zhang PY, Kuramae A, Velthuis M, Donk E, Xu J, Bakker ES (2020) Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability. Frontiers in Plant Science, 11, 58.
DOI PMID |
[68] | Zhang YL, Jeppesen E, Liu XH, Qin BQ, Shi K, Zhou YQ, Thomaz SM, Deng JM (2017) Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173, 259-265. |
[69] | Zhen W, Zhang XM, Guan BH, Yin CY, Yu JL, Jeppesen E, Zhao XF, Liu ZW (2018) Stocking of herbivorous fish in eutrophic shallow clear-water lakes to reduce standing height of submerged macrophytes while maintaining their biomass. Ecological Engineering, 113, 61-64. |
[1] | Qi Wu, Xiaoqing Zhang, Yuting Yang, Yibo Zhou, Yi Ma, Daming Xu, Xingfeng Si, Jian Wang. Spatio-temporal changes in biodiversity of epiphyllous liverworts in Qingyuan Area of Qianjiangyuan-Baishanzu National Park, Zhejiang Province [J]. Biodiv Sci, 2024, 32(4): 24010-. |
[2] | Zhirong Feng, Youcheng Chen, Yanqiong Peng, Li Li, Bo Wang. Ecological network analysis: From metacommunity to metanetwork [J]. Biodiv Sci, 2023, 31(8): 23171-. |
[3] | Helu Zhang, Meihong Zhao, Shichun Sun, Xiaoshou Liu. Diversity and community characteristics of free-living nematodes in plateau salt lakes in Nagqu City, Tibet [J]. Biodiv Sci, 2023, 31(5): 22533-. |
[4] | Xiaocheng Chen, Pengzhan Zhang, Bin Kang, Linshan Liu, Liang Zhao. Species and functional diversity of the passerine birds in the Tibetan Plateau based on specimens from the collection of Northwest Institute of Plateau Biology, Chinese Academy of Sciences [J]. Biodiv Sci, 2023, 31(5): 22638-. |
[5] | Yanhui Li, Tianyuan Lan, Yue Wang, Yang Yu, Changming Zhao, Lihua Li, Wenting Xu, Guozhen Shen. Driving factors of spatial turnover of plant species in Shennongjia [J]. Biodiv Sci, 2022, 30(4): 21377-. |
[6] | Yi Zou. The calculation of β-diversity for different sample sizes [J]. Biodiv Sci, 2021, 29(6): 790-797. |
[7] | Shitong Wang, Yaozhan Xu, Teng Yang, Xinzeng Wei, Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288. |
[8] | Yuan Sun, Weigang Hu, Shuran Yao, Ying Sun, Jianming Deng. Geographic patterns and environmental determinants of angiosperm and terrestrial vertebrate species richness in the Yellow River basin [J]. Biodiv Sci, 2020, 28(12): 1523-1532. |
[9] | Changyan Zhou, Bin Wang, Yun Deng, Junjie Wu, Min Cao, Luxiang Lin. Canopy structure is an important factor driving local-scale woody plant functional beta diversity [J]. Biodiv Sci, 2020, 28(12): 1546-1557. |
[10] | Shuoran Liu, Daode Yang, Xianfu Li, Lu Tan, Jun Sun, Xiaoyang He, Wenshu Yang, Guopeng Ren, Davide Fornacca, Qinghua Cai, Wen Xiao. Diversity in benthic and environmental characteristics on alpine micro-waterbodies and stream ecosystems in northwest Yunnan [J]. Biodiv Sci, 2019, 27(12): 1298-1308. |
[11] | Linlu Shi, Yifei Jia, Aojie Zuo, Tonghui Ma, Jialin Lei, Guangchun Lei, Li Wen. Dynamic change of vegetation cover and productivity of Poyang Lake wetland based on MODIS EVI time series [J]. Biodiv Sci, 2018, 26(8): 828-837. |
[12] | Xiaojing Li, Zhengquan Zhou, Linlin Chen, Baoquan Li. Characteristics of macrobenthic communities in the estuary of Dagujia River and its adjacent water areas in Yantai, Shandong [J]. Biodiv Sci, 2016, 24(2): 157-165. |
[13] | Lei Li, Yupeng Geng, Zhichun Lan, Jiakuan Chen, Zhiping Song. Phenotypic plasticity of aquatic plants in heterogeneous environments: a review [J]. Biodiv Sci, 2016, 24(2): 216-227. |
[14] | Xiaolin Chen, Guangjie Chen, Huibin Lu, Xiaodong Liu, Hucai Zhang. Long-term diatom biodiversity responses to productivity in lakes of Fuxian and Dianchi [J]. Biodiv Sci, 2015, 23(1): 89-100. |
[15] | Yan Zhu, Fan Bai, Haifeng Liu, Wenchao Li, Liang Li, Guangqi Li, Shunzhong Wang, Weiguo Sang. Population distribution patterns and interspecific spatial associations in warm temperate secondary forests, Beijing [J]. Biodiv Sci, 2011, 19(2): 252-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn