生物多样性 ›› 2023, Vol. 31 ›› Issue (5): 23037. DOI: 10.17520/biods.2023037
所属专题: 传粉生物学; 昆虫多样性与生态功能
赵秋杰1,2, 郭辉军1,3, 孟广涛4, 钟明川4, 尹俊5, 刘倬橙2, 李品荣4, 陈力2, 陶毅1,2, 秋生6, 王红2,*(), 赵延会2,*()
收稿日期:
2023-02-09
接受日期:
2023-04-18
出版日期:
2023-05-20
发布日期:
2023-04-25
通讯作者:
* E-mail: 基金资助:
Qiujie Zhao1,2, Huijun Guo1,3, Guangtao Meng4, Mingchuan Zhong4, Jun Yin5, Zhuocheng Liu2, Pinrong Li4, Li Chen2, Yi Tao1,2, Sheng Qiu6, Hong Wang2,*(), Yanhui Zhao2,*()
Received:
2023-02-09
Accepted:
2023-04-18
Online:
2023-05-20
Published:
2023-04-25
Contact:
* E-mail: 摘要:
过度放牧对全球大多数草地群落造成严重威胁。蜜蜂是草地群落中的关键传粉类群, 放牧可能引起群落中植物多样性和巢穴资源变动, 从而对蜜蜂多样性产生不利影响。然而, 在放牧历史较长和放牧管理良好的群落, 放牧对蜜蜂多样性也可能存在正面或中性的影响。因此, 放牧如何影响蜜蜂多样性及其在生态修复中的作用还需要深入研究。本研究整合已有文献资料以及近年来的研究实践, 提出通过整合蜜蜂物种丰富度、功能多样性、系统发育多样性, 以及传粉网络特征等与生态系统功能密切相关因素的研究, 能够更加准确地认识蜜蜂多样性在生态修复过程中的动态变化以及存在的问题。对于草地退化程度较低的地区, 建议通过有效的放牧管理, 利用草地群落自身的复原力实现蜜蜂的逐步修复。而对于草地退化严重的地区, 则需要在实行放牧管理的基础上, 通过人为干预的辅助再生策略加速生态修复进程, 如补播草种增加花多度和提供适宜蜜蜂的筑巢环境等。补播草种的筛选和组合要综合考虑其在传粉网络中的角色, 以及花特征和花期物候等因素, 确保蜜蜂在不同花期均能获得足够的食物。针对我国南北方不同草地类型开展蜜蜂丧失机制的调查, 并有针对性地制定蜜蜂的生态修复策略, 具有重要意义。
赵秋杰, 郭辉军, 孟广涛, 钟明川, 尹俊, 刘倬橙, 李品荣, 陈力, 陶毅, 秋生, 王红, 赵延会 (2023) 放牧对蜜蜂的影响及其生态修复建议. 生物多样性, 31, 23037. DOI: 10.17520/biods.2023037.
Qiujie Zhao, Huijun Guo, Guangtao Meng, Mingchuan Zhong, Jun Yin, Zhuocheng Liu, Pinrong Li, Li Chen, Yi Tao, Sheng Qiu, Hong Wang, Yanhui Zhao (2023) Effects of grazing on bees and suggestions for its ecological restoration. Biodiversity Science, 31, 23037. DOI: 10.17520/biods.2023037.
图1 蜜蜂总科主要类群筑巢环境。黑色方格: 蜜蜂可以使用的筑巢地点; 白色方格: 蜜蜂不可以使用的筑巢地点。数据来自Michener (2007)和Harmon-Threatt (2020)。
Fig. 1 The nesting sites of the main groups in Apoidea. Black cells: The nesting sites can be used by the bee genus; white cells: The nesting sites cannot be used by the bee genus. Data from Michener (2007) and Harmon-Threatt (2020).
研究区域 Study area | 牲畜种类 Livestock species | 蜜蜂类群 Functional groups of bees | 放牧对蜜蜂 多度的影响 Effect of grazing on bee abundance | 放牧对蜜蜂物种 丰富度的影响 Effect of grazing on bee richness | 文献 Reference |
---|---|---|---|---|---|
美国西北部 Northwest United States | 牛 Cattle | 熊蜂 Bumblebees | - | - | Kimoto et al, |
美国西北部 Northwest United States | 牛 Cattle | 独栖性蜜蜂 Solitary bees | 0 | 0 | Kimoto et al, |
美国中西部 Midwest United States | 牛 Cattle | 蜜蜂总科物种 Apoidea | 0 | 0 | Stein et al, |
美国西南部 Southwest United States | 牛、羊 Cattle, sheep | 熊蜂 Bumblebees | 0 | - | Hatfield & LeBuhn, |
美国西南部 Southwest United States | 牛 Cattle | 蜜蜂总科物种 Apoidea | - | 0 | Minckley, |
美国西部 Western United States | 牛 Cattle | 蜜蜂总科物种 Apoidea | - | 0 | Kearns & Oliveras, |
英国威尔士 Wales, UK | 牛、马、羊 Cattle, ponies, sheep | 蜜蜂总科物种 Apoidea | - | - | Davidson et al, |
德国北部 Northern Germany | 牛 Cattle | 蜜蜂总科物种 Apoidea | + | - | Kruess & Tscharntke, |
德国西北部 Northwest Germany | 羊 Sheep | 独栖性蜜蜂 Solitary bees | 0 | 0 | Steffan-Dewenter & Leschke, |
匈牙利东南部 Southeast Hungary | 牛 Cattle | 蜜蜂总科物种 Apoidea | 0 | 0 | Batáry et al, |
瑞典中部 Central Sweden | 牛 Cattle | 蜜蜂总科物种 Apoidea | 0 | 0 | Sj?din, |
中国西南部 Southwest China | 牦牛 Yak | 熊蜂 Bumblebees | - | - | Xie et al, |
表1 草地群落中放牧对蜜蜂多度和多样性的影响研究案例。放牧对蜜蜂多度和多样性存在正面(+)、中性(0)或负面影响(-)。
Table 1 Studies investigated the effects of grazing on bee abundance and species richness in grasslands. Livestock grazing could have a positive (+), neutral (0) or negative (-) effect on bee abundance and diversity.
研究区域 Study area | 牲畜种类 Livestock species | 蜜蜂类群 Functional groups of bees | 放牧对蜜蜂 多度的影响 Effect of grazing on bee abundance | 放牧对蜜蜂物种 丰富度的影响 Effect of grazing on bee richness | 文献 Reference |
---|---|---|---|---|---|
美国西北部 Northwest United States | 牛 Cattle | 熊蜂 Bumblebees | - | - | Kimoto et al, |
美国西北部 Northwest United States | 牛 Cattle | 独栖性蜜蜂 Solitary bees | 0 | 0 | Kimoto et al, |
美国中西部 Midwest United States | 牛 Cattle | 蜜蜂总科物种 Apoidea | 0 | 0 | Stein et al, |
美国西南部 Southwest United States | 牛、羊 Cattle, sheep | 熊蜂 Bumblebees | 0 | - | Hatfield & LeBuhn, |
美国西南部 Southwest United States | 牛 Cattle | 蜜蜂总科物种 Apoidea | - | 0 | Minckley, |
美国西部 Western United States | 牛 Cattle | 蜜蜂总科物种 Apoidea | - | 0 | Kearns & Oliveras, |
英国威尔士 Wales, UK | 牛、马、羊 Cattle, ponies, sheep | 蜜蜂总科物种 Apoidea | - | - | Davidson et al, |
德国北部 Northern Germany | 牛 Cattle | 蜜蜂总科物种 Apoidea | + | - | Kruess & Tscharntke, |
德国西北部 Northwest Germany | 羊 Sheep | 独栖性蜜蜂 Solitary bees | 0 | 0 | Steffan-Dewenter & Leschke, |
匈牙利东南部 Southeast Hungary | 牛 Cattle | 蜜蜂总科物种 Apoidea | 0 | 0 | Batáry et al, |
瑞典中部 Central Sweden | 牛 Cattle | 蜜蜂总科物种 Apoidea | 0 | 0 | Sj?din, |
中国西南部 Southwest China | 牦牛 Yak | 熊蜂 Bumblebees | - | - | Xie et al, |
[1] |
Albrecht M, Duelli P, Müller C, Kleijn D, Schmid B (2007) The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology, 44, 813-822.
DOI URL |
[2] | Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Morse H, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Staniczenko PPA, Stone GN, Vaughan IP, Memmott J (2019) A systems approach reveals urban pollinator hotspots and conservation opportunities. Nature Ecology & Evolution, 3, 363-373. |
[3] |
Banaszak-Cibicka W, Dylewski Ł (2021) Species and functional diversity—A better understanding of the impact of urbanization on bee communities. Science of the Total Environment, 774, 145729.
DOI URL |
[4] | Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences, USA, 110, 4656-4660. |
[5] |
Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: The architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38, 567-593.
DOI URL |
[6] |
Batáry P, Báldi A, Sárospataki M, Kohler F, Verhulst J, Knop E, Herzog F, Kleijn D (2010) Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agriculture, Ecosystems & Environment, 136, 35-39.
DOI URL |
[7] |
Black SH, Shepherd M, Vaughan M (2011) Rangeland management for pollinators. Rangelands, 33, 9-13.
DOI URL |
[8] | Bronstein JL, Huxman TE, Davidowitz G (2007) Plant-mediated effects linking herbivory and pollination. In: Ecological Communities: Plant Mediation in Indirect Interaction Webs (eds Ohgushi T, Craig TP, Price PW), pp. 75-103. Cambridge University Press, Cambridge. |
[9] |
Buckles BJ, Harmon-Threatt AN (2019) Bee diversity in tallgrass prairies affected by management and its effects on above- and below-ground resources. Journal of Applied Ecology, 56, 2443-2453.
DOI URL |
[10] |
Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology, 93, S223-S233.
DOI URL |
[11] |
Cariveau DP, Bruninga-Socolar B, Pardee GL (2020) A review of the challenges and opportunities for restoring animal-mediated pollination of native plants. Emerging Topics in Life Sciences, 4, 99-109.
DOI URL |
[12] |
Carvell C, Meek WR, Pywell RF, Goulson D, Nowakowski M (2007) Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. Journal of Applied Ecology, 44, 29-40.
DOI URL |
[13] |
Chapin IF, Zavaleta E, Eviner V, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature, 405, 234-242.
DOI |
[14] |
Cingolani AM, Noy-Meir I, Díaz S (2005) Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecological Applications, 15, 757-773.
DOI URL |
[15] | Cutter J, Geaumont B, McGranahan D, Harmon J, Limb R, Schauer C, Hovick T (2021) Cattle and sheep differentially alter floral resources and the native bee communities in working landscapes. Ecological Applications, 31, e02406. |
[16] |
Dara A, Baumann M, Freitag M, Hölzel N, Hostert P, Kamp J, Müller D, Prishchepov AV, Kuemmerle T (2020) Annual Landsat time series reveal post-Soviet changes in grazing pressure. Remote Sensing of Environment, 239, 111667.
DOI URL |
[17] |
Davidson KE, Fowler MS, Skov MW, Forman D, Alison J, Botham M, Beaumont N, Griffin JN (2020) Grazing reduces bee abundance and diversity in saltmarshes by suppressing flowering of key plant species. Agriculture, Ecosystems & Environment, 291, 106760.
DOI URL |
[18] | Debano SJ (2006) Effects of livestock grazing on aboveground insect communities in semi-arid grasslands of southeastern Arizona. Biodiversity & Conservation, 15, 2547-2564. |
[19] |
Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C (2013) Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE, 8, e72016.
DOI URL |
[20] |
Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341.
DOI URL |
[21] |
Dumont B, Carrère P, Ginane C, Farruggia A, Lanore L, Tardif A, Decuq F, Darsonville O, Louault F (2011) Plant-herbivore interactions affect the initial direction of community changes in an ecosystem manipulation experiment. Basic and Applied Ecology, 12, 187-194.
DOI URL |
[22] | El-Swaify SA, Pathak P, Rego TJ, Singh S (1985) Soil management for optimized productivity under rainfed conditions in the semi-arid tropics. In: Advances in Soil Science (ed. Stewart BA), pp.1-64. Springer-Verlag, New York. |
[23] |
Elwell SL, Griswold T, Elle E (2016) Habitat type plays a greater role than livestock grazing in structuring shrubsteppe plant-pollinator communities. Journal of Insect Conservation, 20, 515-525.
DOI URL |
[24] |
Enri SR, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B (2017) A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agriculture, Ecosystems & Environment, 241, 1-10.
DOI URL |
[25] |
Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403.
DOI URL |
[26] | Franzén M, Nilsson SG (2010) Both population size and patch quality affect local extinctions and colonizations. Proceedings of the Royal Society B: Biological Sciences, 277, 79-85. |
[27] | Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, Jonson J, Hallett JG, Eisenberg C, Guariguata MR, Liu JG, Hua FY, Echeverría C, Gonzales E, Shaw N, Decleer K, Dixon KW (2019) International principles and standards for the practice of ecological restoration, Second edition. Restoration Ecology, 27, S1-S46. |
[28] | Gao EL, Bi C, Li XW, Yang LL, Liu L, Yao M, Zhao ZG, Lu NN (2021) Effects of grazing in growing seasons on pollination networks in alpine meadow based on data of three consecutive years. Acta Ecologica Sinica, 41, 1472-1481. (in Chinese with English abstract) |
[高二亮, 毕柽, 李昕蔚, 杨丽莉, 刘乐, 姚明, 赵志刚, 路宁娜 (2021) 生长季放牧对高寒草甸传粉网络的影响. 生态学报, 41, 1472-1481.] | |
[29] |
Gao JJ, Carmel Y (2020) Can the intermediate disturbance hypothesis explain grazing-diversity relations at a global scale? Oikos, 129, 493-502.
DOI URL |
[30] |
Genes L, Dirzo R (2022) Restoration of plant-animal interactions in terrestrial ecosystems. Biological Conservation, 265, 109393.
DOI URL |
[31] | Gess FW, Gess SK (1993) Effects of increasing land utilization on species representation and diversity of aculeate wasps and bees in the semi-arid areas of southern Africa. In: Hymenoptera and Biodiversity (eds LaSalle J, Gauld LD), pp. 83-113. CAB International, Wallingford. |
[32] |
Ginane C, Bonnet M, Baumont R, Revell DK (2015) Feeding behaviour in ruminants: A consequence of interactions between a reward system and the regulation of metabolic homeostasis. Animal Production Science, 55, 247-260.
DOI URL |
[33] |
Glenny W, Runyon JB, Burkle LA (2022) A review of management actions on insect pollinators on public lands in the United States. Biodiversity and Conservation, 31, 1995-2016.
DOI |
[34] |
Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumblebees. Annual Review of Entomology, 53, 191-208.
PMID |
[35] |
Grab H, Branstetter MG, Amon N, Urban-Mead KR, Park MG, Gibbs J, Blitzer EJ, Poveda K, Loeb G, Danforth BN (2019) Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science, 363, 282-284.
DOI PMID |
[36] |
Haaland C, Naisbit RE, Bersier LF (2011) Sown wildflower strips for insect conservation: A review. Insect Conservation and Diversity, 4, 60-80.
DOI URL |
[37] |
Hanley TA (1982) The nutritional basis for food selection by ungulates. Journal of Range Management, 35, 146-151.
DOI URL |
[38] |
Harmon-Threatt A (2020) Influence of nesting characteristics on health of wild bee communities. Annual Review of Entomology, 65, 39-56.
DOI PMID |
[39] |
Harvey E, Gounand I, Ward CL, Altermatt F (2017) Bridging ecology and conservation: From ecological networks to ecosystem function. Journal of Applied Ecology, 54, 371-379.
DOI URL |
[40] |
Hatfield RG, LeBuhn G (2007) Patch and landscape factors shape community assemblage of bumble bees, Bombus spp. (Hymenoptera: Apidae), in montane meadows. Biological Conservation, 139, 150-158.
DOI URL |
[41] |
Herms DA, Mattson WJ (1992) The dilemma of plants: To grow or defend. The Quarterly Review of Biology, 67, 283-335.
DOI URL |
[42] | Hernandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: A review of current knowledge and directions for future study. Cities and the Environment, 2, 1-15. |
[43] |
Herrero-Jáuregui C, Oesterheld M (2018) Effects of grazing intensity on plant richness and diversity: A meta-analysis. Oikos, 127, 757-766.
DOI URL |
[44] |
Hopfenmüller S, Holzschuh A, Steffan-Dewenter I (2020) Effects of grazing intensity, habitat area and connectivity on snail-shell nesting bees. Biological Conservation, 242, 108406.
DOI URL |
[45] | Kaiser-Bunbury CN, Blüthgen N (2015) Integrating network ecology with applied conservation: A synthesis and guide to implementation. AoB Plants, 7, plv076. |
[46] | Kaminer A, Kigel J, Dag A, Henkin Z (2010) An assessment of short-term cattle grazing effects on honeybee forage potential in Mediterranean rangelands. Options Méditerranéennes: Série A, Séminaires Méditerranéens, 92, 205-208. |
[47] |
Kearns CA, Oliveras DM (2009) Environmental factors affecting bee diversity in urban and remote grassland plots in Boulder, Colorado. Journal of Insect Conservation, 13, 655-665.
DOI URL |
[48] |
Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annual Review of Entomology, 28, 407-453.
DOI URL |
[49] |
Khalifa SAM, Elshafiey EH, Shetaia AA, El-Wahed AAA, Algethami AF, Musharraf SG, AlAjmi MF, Zhao C, Masry SHD, Abdel-Daim MM, Halabi MF, Kai GY, Al Naggar Y, Bishr M, Diab MAM, El-Seedi HR (2021) Overview of bee pollination and its economic value for crop production. Insects, 12, 688.
DOI URL |
[50] | Kimoto C, DeBano SJ, Thorp RW, Taylor RV, Schmalz H, DelCurto T, Johnson T, Kennedy PL, Rao S (2012) Short-term responses of native bees to livestock and implications for managing ecosystem services in grasslands. Ecosphere, 3, 88. |
[51] | Kluser S, Peduzzi P (2007) Global Pollinator Decline: A Literature Review. Environment Alert Bulletin, 8. |
[52] | Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conservation Biology, 16, 15701-580. |
[53] |
Lázaro A, Tscheulin T, Devalez J, Nakas G, Petanidou T (2016a) Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecological Entomology, 41, 400-412.
DOI URL |
[54] |
Lázaro A, Tscheulin T, Devalez J, Nakas G, Stefanaki A, Hanlidou E, Petanidou T (2016b) Moderation is best: Effects of grazing intensity on plant-flower visitor networks in Mediterranean communities. Ecological Applications, 26, 796-807.
DOI URL |
[55] |
Lezama F, Baeza S, Altesor A, Cesa A, Chaneton EJ, Paruelo JM (2014) Variation of grazing-induced vegetation changes across a large-scale productivity gradient. Journal of Vegetation Science, 25, 8-21.
DOI URL |
[56] |
Ma QQ, Chai LR, Hou FJ, Chang SH, Ma YS, Tsunekawa A, Cheng YX (2019) Quantifying grazing intensity using remote sensing in alpine meadows on Qinghai-Tibetan Plateau. Sustainability, 11, 417.
DOI URL |
[57] |
Mayer C, Soka G, Picker M (2006) The importance of monkey beetle (Scarabaeidae: Hopliini) pollination for Aizoaceae and Asteraceae in grazed and ungrazed areas at Paulshoek, Succulent Karoo, South Africa. Journal of Insect Conservation, 10, 323-333.
DOI URL |
[58] |
McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biological Conservation, 129, 372-382.
DOI URL |
[59] |
Meeus I, Pisman M, Smagghe G, Piot N (2018) Interaction effects of different drivers of wild bee decline and their influence on host-pathogen dynamics. Current Opinion in Insect Science, 26, 136-141.
DOI PMID |
[60] | Michener CD (2007) The Bees of the World, 2nd edn. The Johns Hopkins University Press, Baltimore. |
[61] |
Minckley RL (2014) Maintenance of richness despite reduced abundance of desert bees (Hymenoptera: Apiformes) to persistent grazing. Insect Conservation and Diversity, 7, 263-273.
DOI URL |
[62] | Minckley RL, Roulston TH (2006) Incidental mutualisms and pollen specialization among bees. In: Plant-Pollinator Interactions: From Specialization to Generalization (eds Waser NM, Ollerton J), pp. 69-98. University of Chicago Press, Chicago. |
[63] | Moreira X, Castagneyrol B, Abdala-Roberts L, Traveset A (2019) A meta-analysis of herbivore effects on plant attractiveness to pollinators. Ecology, 100, e02707. |
[64] | Moreno-Mateos D, Alberdi A, Morriën E, van der Putten WH, Rodríguez-Uña A, Montoya D (2020) The long-term restoration of ecosystem complexity. Nature Ecology & Evolution, 4, 676-685. |
[65] | Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier LF, Chave J, Couteron P, Dalecky A, Fontaine C, Gravel D, Hardy OJ, Jabot F, Lavergne S, Leibold M, Mouillot D, Münkemüller T, Pavoine S, Prinzing A, Rodrigues ASL, Rohr RP, Thébault E, Thuiller W (2012) Ecophylogenetics: Advances and perspectives. Biological Reviews of the Cambridge Philosophical Society, 87, 769-785. |
[66] |
Murray TE, Fitzpatrick Ú, Byrne A, Fealy R, Brown MJF, Paxton RJ (2012) Local-scale factors structure wild bee communities in protected areas. Journal of Applied Ecology, 49, 998-1008.
DOI URL |
[67] |
Newbold TA, Stapp P, Levensailor KE, Derner JD, Lauenroth WK (2014) Community responses of arthropods to a range of traditional and manipulated grazing in shortgrass steppe. Environmental Entomology, 43, 556-568.
DOI PMID |
[68] |
Odanaka KA, Rehan SM (2019) Impact indicators: Effects of land use management on functional trait and phylogenetic diversity of wild bees. Agriculture, Ecosystems & Environment, 286, 106663.
DOI URL |
[69] |
Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
DOI URL |
[70] |
Orr MC, Jakob M, Harmon-Threatt A, Mupepele AC (2022) A review of global trends in the study types used to investigate bee nesting biology. Basic and Applied Ecology, 62, 12-21.
DOI URL |
[71] | Pawelek JC, Frankie GW, Thorp RW, Przybylski M (2009) Modification of a community garden to attract native bee pollinators in urban San Luis Obispo, California. Cities and the Environment (CATE), 2, 7. |
[72] |
Pelletier L, McNeil JN (2003) The effect of food supplementation on reproductive success in bumblebee field colonies. Oikos, 103, 688-694.
DOI URL |
[73] | Perring MP, Standish RJ, Price JN, Craig MD, Erickson TE, Ruthrof KX, Whiteley AS, Valentine LE, Hobbs RJ (2015) Advances in restoration ecology: Rising to the challenges of the coming decades. Ecosphere, 6, 131. |
[74] |
Potts SG, Woodcock BA, Roberts SPM, Tscheulin T, Pilgrim ES, Brown VK, Tallowin JR (2009) Enhancing pollinator biodiversity in intensive grasslands. Journal of Applied Ecology, 46, 369-379.
DOI URL |
[75] |
Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones R, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research, 49, 15-22.
DOI URL |
[76] |
Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcock BA, Isaac NJB (2019) Widespread losses of pollinating insects in Britain. Nature Communications, 10, 1018.
DOI PMID |
[77] |
Pykälä J (2000) Mitigating human effects on European biodiversity through traditional animal husbandry. Conservation Biology, 14, 705-712.
DOI URL |
[78] |
Pywell RF, Warman EA, Hulmes L, Hulmes S, Nuttall P, Sparks TH, Critchley CNR, Sherwood A (2006) Effectiveness of new agri-environment schemes in providing foraging resources for bumblebees in intensively farmed landscapes. Biological Conservation, 129, 192-206.
DOI URL |
[79] |
Pywell RF, Heard MS, Bradbury RB, Hinsley S, Nowakowski M, Walker KJ, Bullock JM (2012) Wildlife-friendly farming benefits rare birds, bees and plants. Biology Letters, 8, 772-775.
DOI PMID |
[80] |
Pywell RF, Warman EA, Carvell C, Sparks TH, Dicks LV, Bennett D, Wright A, Critchley CNR, Sherwood A (2005) Providing foraging resources for bumblebees in intensively farmed landscapes. Biological Conservation, 121, 479-494.
DOI URL |
[81] | Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet. 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22, GB1003. |
[82] |
Redpath N, Osgathorpe LM, Park K, Goulson D (2010) Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. Biological Conservation, 143, 492-500.
DOI URL |
[83] |
Rook AJ, Dumont B, Isselstein J, Osoro K, WallisDeVries MF, Parente G, Mills J (2004) Matching type of livestock to desired biodiversity outcomes in pastures—A review. Biological Conservation, 119, 137-150.
DOI URL |
[84] |
Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annual Review of Entomology, 56, 293-312.
DOI PMID |
[85] |
Sardiñas HS, Kremen C (2014) Evaluating nesting microhabitat for ground-nesting bees using emergence traps. Basic and Applied Ecology, 15, 161-168.
DOI URL |
[86] |
Sárospataki M, Báldi A, Batáry P, Józan Z, Erdős S, Rédei T (2009) Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary. Community Ecology, 10, 182-188.
DOI URL |
[87] |
Scheper J, Bommarco R, Holzschuh A, Potts SG, Riedinger V, Roberts SPM, Rundlöf M, Smith HG, Steffan-Dewenter I, Wickens JB, Wickens VJ, Kleijn D (2015) Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology, 52, 1165-1175.
DOI URL |
[88] |
Schiestl FP, Kirk H, Bigler L, Cozzolino S, Desurmont GA (2014) Herbivory and floral signaling: Phenotypic plasticity and tradeoffs between reproduction and indirect defense. New Phytologist, 203, 257-266.
DOI PMID |
[89] |
Scohier A, Ouin A, Farruggia A, Dumont B (2013) Is there a benefit of excluding sheep from pastures at flowering peak on flower-visiting insect diversity? Journal of Insect Conservation, 17, 287-294.
DOI URL |
[90] | Shapira T, Henkin Z, Dag A, Mandelik Y (2020) Rangeland sharing by cattle and bees: Moderate grazing does not impair bee communities and resource availability. Ecological Applications, 101, e02066. |
[91] |
Sjödin NE (2007) Pollinator behavioural responses to grazing intensity. Biodiversity and Conservation, 16, 2103-2121.
DOI URL |
[92] | Söderström B, Svensson B, Vessby K, Glimskär A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodiversity & Conservation, 10, 1839-1863. |
[93] |
Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648.
DOI PMID |
[94] | Steffan-Dewenter I, Leschke K (2003) Effects of habitat management on vegetation and above-ground nesting bees and wasps of orchard meadows in Central Europe. Biodiversity & Conservation, 12, 1953-1968. |
[95] |
Stein DS, Debinski DM, Pleasants JM, Toth AL (2020) Evaluating native bee communities and nutrition in managed grasslands. Environmental Entomology, 49, 717-725.
DOI PMID |
[96] |
Stokstad E (2007) The case of the empty hives. Science, 316, 970-972.
PMID |
[97] | Sugden EA (1985) Pollinators of Astragalus monoensis Barneby (Fabaceae): New host records; potential impact of sheep grazing. The Great Basin Naturalist, 45, 299-312. |
[98] |
Tadey M (2015) Indirect effects of grazing intensity on pollinators and floral visitation. Ecological Entomology, 40, 451-460.
DOI URL |
[99] | Tadey M (2016) Variation in insect assemblage and functional groups along a grazing gradient in an arid environment. Entomology, Ornithology & Herpetology, 5, 179. |
[100] |
Tadey M (2020) Reshaping phenology: Grazing has stronger effects than climate on flowering and fruiting phenology in desert plants. Perspectives in Plant Ecology, Evolution and Systematics, 42, 125501.
DOI URL |
[101] | Thapa-Magar KB, Davis TS, Fernández-Giménez ME (2022) A meta-analysis of the effects of habitat aridity, evolutionary history of grazing and grazing intensity on bee and butterfly communities worldwide. Ecological Solutions and Evidence, 3, e12141. |
[102] | Tilman D (2001) Functional diversity. In: Encyclopedia of Biodiversity, Vol. 3 (ed. Levin SA), pp.109-120. Elsevier, New York. |
[103] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[104] |
Vavra M, Parks CG, Wisdom MJ (2007) Biodiversity, exotic plant species, and herbivory: The good, the bad, and the ungulate. Forest Ecology and Management, 246, 66-72.
DOI URL |
[105] |
Vázquez DP, Simberloff D (2003) Changes in interaction biodiversity induced by an introduced ungulate. Ecology Letters, 6, 1077-1083.
DOI URL |
[106] |
Vellend M, Drummond EBM, Tomimatsu H (2010) Effects of genotype identity and diversity on the invasiveness and invasibility of plant populations. Oecologia, 162, 371-381.
DOI PMID |
[107] |
Vulliamy B, Potts SG, Willmer PG (2006) The effects of cattle grazing on plant-pollinator communities in a fragmented Mediterranean landscape. Oikos, 114, 529-543.
DOI URL |
[108] |
Wagner DL (2020) Insect declines in the Anthropocene. Annual Review of Entomology, 65, 457-480.
DOI PMID |
[109] |
Waldron S, Brown C, Longworth J (2010) Grassland degradation and livelihoods in China’s western pastoral region: A framework for understanding and refining China’s recent policy responses. China Agricultural Economic Review, 2, 298-320.
DOI URL |
[110] |
Wang C, Tang YJ (2019) A global meta-analyses of the response of multi-taxa diversity to grazing intensity in grasslands. Environmental Research Letters, 14, 114003.
DOI |
[111] | Wang L, Delgado-Baquerizo M, Wang DL, Isbell F, Liu J, Feng C, Liu JS, Zhong ZW, Zhu H, Yuan X, Chang Q, Liu C (2019) Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences, USA, 116, 6187-6192. |
[112] | Wang MJ, Sun R, Liu Z, Xin XP, Liu G, Zhang L, Qiao C (2017) A study of grazing intensity in the Hulunbuir grasslands using remote sensing. Acta Prataculturae Sinica, 26, 28-36. (in Chinese with English abstract) |
[王梦佳, 孙睿, 刘喆, 辛晓平, 刘刚, 张蕾, 乔晨 (2017) 基于遥感数据的呼伦贝尔草原放牧强度研究. 草业学报, 26, 28-36.]
DOI |
|
[113] |
Waser NM, Real LA (1979) Effective mutualism between sequentially flowering plant species. Nature, 281, 670-672.
DOI |
[114] |
Westphal C, Steffan-Dewenter I, Tscharntke T (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. Journal of Applied Ecology, 46, 187-193.
DOI URL |
[115] |
Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143, 2280-2291.
DOI URL |
[116] |
Williams NM, Kremen C (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecological Applications, 17, 910-921.
DOI URL |
[117] |
Wimp GM, Martinsen GD, Floate KD, Bangert RK, Whitham TG (2005) Plant genetic determinants of arthropod community structure and diversity. Evolution, 59, 61-69.
PMID |
[118] |
Winfree R, Reilly JR, Bartomeus I, Cariveau DP, Williams NM, Gibbs J (2018) Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science, 359, 791-793.
DOI PMID |
[119] | Wu YR (2000) Fauna Sinica Insecta, Vol. 20: Hymenoptera·Melittidae·Apidae. Science Press, Beijing. (in Chinese) |
[吴燕如 (2000) 中国动物志·昆虫纲·第20卷: 膜翅目·准蜂科·蜜蜂科. 科学出版社, 北京.] | |
[120] | Wu YR (2006) Fauna Sinica Insecta,Vol. 44:Hymenoptera·Megachilidae. Science Press, Beijing. (in Chinese) |
[吴燕如 (2006) 中国动物志·昆虫纲·第44卷: 膜翅目·切叶蜂科. 科学出版社, 北京.] | |
[121] |
Xie ZH, Williams PH, Tang Y (2008) The effect of grazing on bumblebees in the high rangelands of the eastern Tibetan Plateau of Sichuan. Journal of Insect Conservation, 12, 695-703.
DOI URL |
[122] |
Yoshihara Y, Chimeddorj B, Buuveibaatar B, Lhagvasuren B, Takatsuki S (2008) Effects of livestock grazing on pollination on a steppe in eastern Mongolia. Biological Conservation, 141, 2376-2386.
DOI URL |
[123] |
Zhao YH, Lázaro A, Li HD, Tao ZB, Liang H, Zhou W, Ren ZX, Xu K, Li DZ, Wang H (2022) Morphological trait-matching in plant-Hymenoptera and plant-Diptera mutualisms across an elevational gradient. Journal of Animal Ecology, 91, 196-209.
DOI URL |
[124] |
Zhao YH, Memmott J, Vaughan IP, Li HD, Ren ZX, Lázaro A, Zhou W, Xu X, Wang WJ, Liang H, Li DZ, Wang H (2021) The impact of a native dominant plant, Euphorbia jolkinii, on plant-flower visitor networks and pollen deposition on stigmas of co-flowering species in subalpine meadows of Shangri-La, SW China. Journal of Ecology, 109, 2107-2120.
DOI URL |
[1] | 王永财, 万华伟, 高吉喜, 胡卓玮, 孙晨曦, 吕娜, 张志如. 基于深度学习的我国北方常见天然草地植物识别[J]. 生物多样性, 2024, 32(4): 23435-. |
[2] | 万凤鸣, 万华伟, 张志如, 高吉喜, 孙晨曦, 王永财. 草地植物多样性无人机调查的应用潜力[J]. 生物多样性, 2024, 32(3): 23381-. |
[3] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[4] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[5] | 李锋, 成超男, 杨锐. 生态系统修复国内外研究进展与展望[J]. 生物多样性, 2022, 30(10): 22519-. |
[6] | 王鑫厅, 柴静, 姜超, 邰阳, 迟延艳, 张维华, 刘芳, 李素英. 典型草原大针茅种群空间格局及对长期过度放牧的响应[J]. 生物多样性, 2020, 28(2): 128-134. |
[7] | 土艳丽,王力平,王喜龙,王林林,段元文. 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位[J]. 生物多样性, 2019, 27(3): 306-313. |
[8] | 莫张勤. 生态保护红线修复机制法治化: 定位、困境及其出路[J]. 生物多样性, 2019, 27(3): 347-352. |
[9] | 宋瑞玲, 王昊, 张迪, 吕植, 朱子云, 张璐, 刘炎林, 才文公保, 吴岚. 基于MODIS-EVI评估三江源高寒草地的保护成效[J]. 生物多样性, 2018, 26(2): 149-157. |
[10] | 张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性, 2018, 26(2): 111-129. |
[11] | 董世魁, 汤琳, 王学霞, 刘颖慧, 刘世梁, 刘全儒, 吴娱, 李媛媛, 苏旭坤, 赵晨. 青藏高原高寒草地植物多样性测定的最小样地面积[J]. 生物多样性, 2013, 21(6): 651-657. |
[12] | 方强, 黄双全. 传粉网络的研究进展: 网络的结构和动态[J]. 生物多样性, 2012, 20(3): 300-307. |
[13] | 赵紫华, 王颖, 贺达汉, 张蓉, 朱猛蒙, 董风林. 苜蓿草地生境丧失与破碎化对昆虫物种丧失与群落重建的影响[J]. 生物多样性, 2011, 19(4): 453-462. |
[14] | 薛睿, 郑淑霞, 白永飞. 不同利用方式和载畜率对内蒙古典型草原群落初级生产力和植物补偿性生长的影响[J]. 生物多样性, 2010, 18(3): 300-311. |
[15] | 马文红, 方精云. 中国北方典型草地物种丰富度与生产力的关系[J]. 生物多样性, 2006, 14(1): 21-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn