生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22575. DOI: 10.17520/biods.2022575
所属专题: 土壤生物与土壤健康; 昆虫多样性与生态功能
程建伟1,2, 王亚东2, 王桠楠2, 李莹2, 郭颖2, 白正2, 刘新民3, 李永宏2,*()
收稿日期:
2022-10-10
接受日期:
2022-11-28
出版日期:
2022-12-20
发布日期:
2022-12-08
通讯作者:
*E-mail: lifyhong@126.com
基金资助:
Jianwei Cheng1,2, Yadong Wang2, Yanan Wang2, Ying Li2, Ying Guo2, Zheng Bai2, Xinmin Liu3, Frank Yonghong Li2,*()
Received:
2022-10-10
Accepted:
2022-11-28
Online:
2022-12-20
Published:
2022-12-08
Contact:
*E-mail: lifyhong@126.com
摘要:
土壤动物是陆地生态系统的重要组分, 在有机质分解过程中具有重要作用。目前有关土壤动物在生态系统分解中的作用研究主要聚焦于植物凋落物的分解, 而对动物粪便分解的研究稀少。本研究在内蒙古典型草原设置了马粪和牛粪分解原位实验, 使用不同孔径的金属隔离网排除不同体型大小的土壤动物, 通过测定大中型土壤动物对畜粪分解过程中质量损失、碳氮含量和微生物呼吸以及土壤养分动态变化的影响, 解析其在分解中的作用。设置5个处理, 即CK, 仅土壤, 无粪; T0, 粪添加+0.425 mm隔离网(排除了粪居型和掘洞型粪金龟和中型土壤动物); T1, 粪添加+1 mm隔离网(排除了粪居型和掘洞型粪金龟); T2, 粪添加+2 mm隔离网(排除了掘洞型粪金龟); T3, 仅粪添加(不排除土壤动物)。结果表明: (1)在畜粪分解60天内, 土壤动物对畜粪的干质量损失没有显著的促进作用(P > 0.05); 相反, 在畜粪分解360天, 不隔离土壤动物处理(T3)显著地提高了牛粪干质量损失(P < 0.05), 而降低了马粪干质量损失(P < 0.05)。(2)在畜粪分解的60天内, 畜粪中碳和氮含量下降速度在有土壤动物存在的情况下(T3)快于隔离土壤动物(T0和T1)。(3)两种畜粪添加增加了土壤微生物的呼吸, 且这种增加趋势在实验的第15天和第30天在土壤动物存在时(T3)最明显。(4)与对照(CK)相比, 马粪添加处理提高了土壤速效氮、有机碳的含量和土壤含水量, 且这种增加趋势在排除掘洞型粪金龟(T2)和不排除土壤动物(T3)条件下表现更显著(P < 0.05), 而牛粪添加处理没有明显改变这些指标(P > 0.05)。研究表明, 分解初期粪金龟的取食和活动会改变畜粪的理化性质, 进而影响分解后期土壤生物在畜粪分解中的作用。
程建伟, 王亚东, 王桠楠, 李莹, 郭颖, 白正, 刘新民, 李永宏 (2022) 半干旱草原大中型土壤动物在畜粪分解中的作用. 生物多样性, 30, 22575. DOI: 10.17520/biods.2022575.
Jianwei Cheng, Yadong Wang, Yanan Wang, Ying Li, Ying Guo, Zheng Bai, Xinmin Liu, Frank Yonghong Li (2022) Effects of soil macro- and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe. Biodiversity Science, 30, 22575. DOI: 10.17520/biods.2022575.
处理 Treatments | 粪干重 Dry dung mass (g) | 隔离网孔隙大小The size of the mesh hole | 隔离土壤动物类型 The type of soil fauna excluded |
---|---|---|---|
CK | 0 | 无隔离网 No wire-mesh-cage | 无 No |
T0 | 40 | 0.425 mm | 粪居型和掘洞型粪金龟和中型土壤动物 Dweller and tunneler dung beetle and soil meso-fauna |
T1 | 40 | 1 mm | 粪居型和掘洞型粪金龟 Dweller and tunneler dung beetle |
T2 | 40 | 2 mm | 掘洞型粪金龟 Tunneler dung beetle |
T3 | 40 | 无隔离网 No wire-mesh-cage | 无 No |
表1 不同畜粪土壤动物处理实验设计
Table 1 Experimental design of different dung arthropod treatments
处理 Treatments | 粪干重 Dry dung mass (g) | 隔离网孔隙大小The size of the mesh hole | 隔离土壤动物类型 The type of soil fauna excluded |
---|---|---|---|
CK | 0 | 无隔离网 No wire-mesh-cage | 无 No |
T0 | 40 | 0.425 mm | 粪居型和掘洞型粪金龟和中型土壤动物 Dweller and tunneler dung beetle and soil meso-fauna |
T1 | 40 | 1 mm | 粪居型和掘洞型粪金龟 Dweller and tunneler dung beetle |
T2 | 40 | 2 mm | 掘洞型粪金龟 Tunneler dung beetle |
T3 | 40 | 无隔离网 No wire-mesh-cage | 无 No |
图2 畜粪分解一年过程中土壤动物对畜粪质量损失的影响。(a)马粪干质量损失; (b)牛粪干质量损失; (c)马粪湿质量损失; (d)牛粪湿质量损失。柱状图表示分解结束时不同土壤动物处理下畜粪质量损失的变化。T0, 粪添加+0.425 mm隔离网(排除了粪金龟(粪居型和掘洞型粪金龟)和中型土壤动物); T1, 粪添加+1 mm隔离网(排除了粪金龟); T2, 粪添加+2 mm隔离网(排除了掘洞型粪金龟); T3, 仅粪添加(不排除土壤动物)。采用Duncan检验进行事后比较, *和不同小写字母代表不同处理间差异显著(P < 0.05)。
Fig. 2 Effects of soil fauna on the mass loss of animal dung over a 1-year period. (a) Horse-dry; (b) Cattle-dry; (c) Horse-wet; (d) cattle-wet. The bar graph shows the change in the mass loss of animal dung under different soil fauna treatments at the end of decomposition period. T0, Dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, Dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, Dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, Exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using * and different lowercase letters (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
影响因素 Factors | 干粪质量损失 DM | 湿粪质量损失 WM | 粪碳含量 DC | 粪氮含量 DN | 隔离系统微 生物呼吸MR | 土壤微生物 呼吸SR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | df | F | df | F | df | F | df | F | df | F | |
畜粪类型 D | 1 | 2.01 | 1 | 161.23*** | 1 | 183.33*** | 1 | 0.14 | 1 | 20.11*** | 1 | 23.65*** |
土壤动物 S | 3 | 1.59 | 3 | 3.04* | 3 | 30.27*** | 3 | 43.52*** | 3 | 1.64 | 4 | 13.26*** |
分解时间 T | 5 | 50.55*** | 5 | 218.78*** | 3 | 38.96*** | 3 | 17.70*** | 8 | 200.21*** | 4 | 108.19*** |
畜粪类型 × 土壤动物 D × S | 3 | 3.58* | 3 | 3.82** | 3 | 1.49 | 3 | 5.46** | 3 | 1.25 | 4 | 0.43 |
畜粪类型 × 分解时间 D × T | 5 | 4.69*** | 5 | 20.77*** | 3 | 2.82* | 3 | 0.50 | 8 | 4.06*** | 4 | 3.05* |
土壤动物 × 分解时间 S × T | 15 | 0.55 | 15 | 4.49*** | 9 | 2.59* | 9 | 2.74** | 24 | 0.82 | 16 | 5.23*** |
畜粪类型 × 土壤动物 × 分解时间 D × S × T | 15 | 0.94 | 15 | 0.93 | 9 | 1.82 | 9 | 0.87 | 24 | 0.53 | 16 | 1.38 |
表2 畜粪类型(D)、土壤动物(S)和分解时间(T)对干(DM)和湿(WM)畜粪质量损失、畜粪碳(DC)和氮(DN)含量、隔离系统微生物呼吸(MR)和土壤微生物呼吸(SR)影响的重复测量方差分析
Table 2 Results (F-values) of a repeated-measures ANOVA on the effects of dung type (D), soil fauna (S) and time of measurement (T) on dry (DM) and wet (WM) dung mass loss, dung carbon (DC) and nitrogen (DN) contents, the mesocosm microbial respiration (MR) and soil microbial respiration (SR)
影响因素 Factors | 干粪质量损失 DM | 湿粪质量损失 WM | 粪碳含量 DC | 粪氮含量 DN | 隔离系统微 生物呼吸MR | 土壤微生物 呼吸SR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | df | F | df | F | df | F | df | F | df | F | |
畜粪类型 D | 1 | 2.01 | 1 | 161.23*** | 1 | 183.33*** | 1 | 0.14 | 1 | 20.11*** | 1 | 23.65*** |
土壤动物 S | 3 | 1.59 | 3 | 3.04* | 3 | 30.27*** | 3 | 43.52*** | 3 | 1.64 | 4 | 13.26*** |
分解时间 T | 5 | 50.55*** | 5 | 218.78*** | 3 | 38.96*** | 3 | 17.70*** | 8 | 200.21*** | 4 | 108.19*** |
畜粪类型 × 土壤动物 D × S | 3 | 3.58* | 3 | 3.82** | 3 | 1.49 | 3 | 5.46** | 3 | 1.25 | 4 | 0.43 |
畜粪类型 × 分解时间 D × T | 5 | 4.69*** | 5 | 20.77*** | 3 | 2.82* | 3 | 0.50 | 8 | 4.06*** | 4 | 3.05* |
土壤动物 × 分解时间 S × T | 15 | 0.55 | 15 | 4.49*** | 9 | 2.59* | 9 | 2.74** | 24 | 0.82 | 16 | 5.23*** |
畜粪类型 × 土壤动物 × 分解时间 D × S × T | 15 | 0.94 | 15 | 0.93 | 9 | 1.82 | 9 | 0.87 | 24 | 0.53 | 16 | 1.38 |
图3 畜粪分解一年过程中土壤动物对马粪(a, c)和牛粪(b, d)碳和氮含量的影响。T0, 粪添加+0.425 mm隔离网(排除了粪金龟(粪居型和掘洞型粪金龟)和中型土壤动物); T1, 粪添加+1 mm隔离网(排除了粪金龟); T2, 粪添加+2 mm隔离网(排除了掘洞型粪金龟); T3, 仅粪添加(不排除土壤动物)。采用Duncan检验进行事后比较, *代表不同处理间差异显著(P < 0.05)。
Fig. 3 Effects of soil fauna on the carbon (C) and nitrogen (N) contents of horse dung (a, c) and cattle dung (b, d) over a 1-year period. T0, Dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, Dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, Dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, Exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
图4 畜粪分解一年过程中土壤动物对马粪(a, c)和牛粪(b, d)微生物呼吸的影响。CK, 仅土壤, 无粪; T0, 粪添加+0.425 mm隔离网(排除了粪金龟(粪居型和掘洞型粪金龟)和中型土壤动物); T1, 粪添加+1 mm隔离网(排除了粪金龟); T2, 粪添加+2 mm隔离网(排除了掘洞型粪金龟); T3, 仅粪添加(不排除土壤动物)。采用Duncan检验进行事后比较, *代表不同处理间差异显著(P < 0.05)。
Fig. 4 Microbial respiration (μmol·m?2·s?1) from the mesocosms that contain dung and soil (a: horse, b: cattle) and soil only [after horse dung (c) and cattle dung (d) is removed] under different soil fauna treatments over a 1-year period. CK, Soil only, no dung nor soil fauna; T0, Dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, Dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, Dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, Exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
图5 在畜粪分解第30 d土壤动物对土壤特性的影响。CK, 仅土壤, 无粪; T0, 粪添加+0.425 mm隔离网(排除了粪金龟(粪居型和掘洞型粪金龟)和中型土壤动物); T1, 粪添加+1 mm隔离网(排除了粪金龟); T2, 粪添加+2 mm隔离网(排除了掘洞型粪金龟); T3, 仅粪添加(不排除土壤动物)。采用Duncan检验进行事后比较, 不同的小写字母表示不同处理间差异显著(P < 0.05)。采用独立样本t检验进行事后比较, 不同的大写字母代表牛粪和马粪之间在P < 0.05水平上存在显著差异。
Fig. 5 Effects of soil fauna on soil properties at day 30 of the experimental period. CK, Soil only, no dung nor soil fauna; T0, dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, exposed dung (with no exclusion of soil fauna). The significant differences between treatments at P < 0.05 are denoted using different lower letters (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons). Different uppercase letters indicate significant difference between cattle dung and horse dung at P < 0.05, after using independent sample t test for post hoc comparisons.
[1] |
Cheng JW, Li FY, Wang YD, Wang YN, Liu XM, Zhang JZ, Wang ZY, Li YL, Wang H, Yang ZP, Potter MA (2022) Dweller and tunneler dung beetles synergistically accelerate decomposition of cattle and horse dung in a semi-arid steppe. Agriculture, Ecosystems & Environment, 329, 107873.
DOI URL |
[2] | Cheng JW, Liu XM, Hao BH, Zhang XY, Zhang YP, Ma WH (2017) Effects of nitrogen deposition on ground-dwelling arthropods in a temperate grassland of Inner Mongolia. Chinese Journal of Ecology, 36, 2237-2245. (in Chinese with English abstract) |
[ 程建伟, 刘新民, 郝百惠, 张芯毓, 张宇平, 马文红 (2017) 氮沉降对内蒙古典型草原地表节肢动物的影响. 生态学杂志, 36, 2237-2245.] | |
[3] |
Dormont L, Epinat G, Lumaret JP (2004) Trophic preferences mediated by olfactory cues in dung beetles colonizing cattle and horse dung. Environmental Entomology, 33, 370-377.
DOI URL |
[4] | Du ZY, Cai YJ, Wang XD, Zhang B, Du Z (2019) Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 39, 4627-4637. (in Chinese with English abstract) |
[ 杜子银, 蔡延江, 王小丹, 张斌, 杜忠 (2019) 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 39, 4627-4637.] | |
[5] |
Du ZY, Wang XD, Xiang J, Wu Y, Zhang B, Yan Y, Zhang XK, Cai YJ (2021) Yak dung pat fragmentation affects its carbon and nitrogen leaching in Northern Tibet, China. Agriculture, Ecosystems & Environment, 310, 107301.
DOI URL |
[6] |
Edwards PB (1991) Seasonal variation in the dung of African grazing mammals, and its consequences for coprophagous insects. Functional Ecology, 5, 617-628.
DOI URL |
[7] |
Evans KS, Mamo M, Wingeyer A, Schacht WH, Eskridge KM, Bradshaw J, Ginting D (2019) Soil fauna accelerate dung pat decomposition and nutrient cycling into grassland soil. Rangeland Ecology & Management, 72, 667-677.
DOI URL |
[8] |
García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16, 1045-1053.
DOI PMID |
[9] |
Guo YY, Cao JM, Che ZB, Yang HJ, Huang XY, Lu WH (2021) Effects of dung beetles on decomposition of cattle dung in spring and autumn in a Seriphidium-dominated desert, China. Chinese Journal of Applied Ecology, 32, 1854-1862. (in Chinese with English abstract)
DOI |
[ 郭亚亚, 曹佳敏, 车昭碧, 杨寒珺, 黄星宇, 鲁为华 (2021) 粪甲虫对绢蒿荒漠春秋两季牛粪分解的影响. 应用生态学报, 32, 1854-1862.]
DOI |
|
[10] | He YX, Sun G, Luo P, Wu N (2009) Effects of dung deposition on grassland ecosystem: A review. Chinese Journal of Ecology, 28, 322-328. (in Chinese with English abstract) |
[ 何奕忻, 孙庚, 罗鹏, 吴宁 (2009) 牲畜粪便对草地生态系统影响的研究进展. 生态学杂志, 28, 322-328.] | |
[11] |
Holter P (2016) Herbivore dung as food for dung beetles: Elementary coprology for entomologists. Ecological Entomology, 41, 367-377.
DOI URL |
[12] | Holter P, Scholtz CH (2007) What do dung beetles eat? Ecological Entomology, 32, 690-697. |
[13] |
Johnson SN, Lopaticki G, Barnett K, Facey SL, Powell JR, Hartley SE (2016) An insect ecosystem engineer alleviates drought stress in plants without increasing plant susceptibility to an above-ground herbivore. Functional Ecology, 30, 894-902.
DOI URL |
[14] |
Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5, 588-595.
DOI URL |
[15] | Liu XM, Hai Y (2011) Dung beetle species composition and decomposition function in horse dung in desert steppe of Inner Mongolia. Chinese Journal of Ecology, 30, 2269-2276. (in Chinese with English abstract) |
[ 刘新民, 海英 (2011) 荒漠草原马粪中粪金龟子组成及分解作用. 生态学杂志, 30, 2269-2276.] | |
[16] |
Manning P, Slade EM, Beynon SA, Lewis OT (2016) Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agriculture, Ecosystems & Environment, 218, 87-94.
DOI URL |
[17] |
Menéndez R, Webb P, Orwin KH (2016) Complementarity of dung beetle species with different functional behaviours influence dung-soil carbon cycling. Soil Biology and Biochemistry, 92, 142-148.
DOI URL |
[18] |
Milotić T, Quidé S, Van Loo T, Hoffmann M (2017) Linking functional group richness and ecosystem functions of dung beetles: An experimental quantification. Oecologia, 183, 177-190.
DOI PMID |
[19] |
Moorhead DL, Sinsabaugh RL (2000) Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 14, 71-79.
DOI URL |
[20] |
Mroczyński R, Komosiński K (2014) Differences between beetle communities colonizing cattle and horse dung. European Journal of Entomology, 111, 349-355.
DOI URL |
[21] |
Nervo B, Caprio E, Celi L, Lonati M, Lombardi G, Falsone G, Iussig G, Palestrini C, Said-Pullicino D, Rolando A (2017) Ecological functions provided by dung beetles are interlinked across space and time: Evidence from 15N isotope tracing. Ecology, 98, 433-446.
DOI URL |
[22] | Piccini I, Arnieri F, Caprio E, Nervo B, Pelissetti S, Palestrini C, Roslin T, Rolando A (2017) Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS ONE, 12, e0178077. |
[23] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract) |
[ 邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[24] |
Sitters J, Maechler MJ, Edwards PJ, Suter W, Venterink HO (2014) Interactions between C : N : P stoichiometry and soil macrofauna control dung decomposition of savanna herbivores. Functional Ecology, 28, 776-786.
DOI URL |
[25] |
Slade EM, Roslin T, Santalahti M, Bell T (2016) Disentangling the ‘brown world’ faecal-detritus interaction web: Dung beetle effects on soil microbial properties. Oikos, 125, 629-635.
DOI URL |
[26] |
van Klink R, van der Plas F, WallisDeVries MF, Olff H (2015) Effects of large herbivores on grassland arthropod diversity. Biological Reviews, 90, 347-366.
DOI URL |
[27] |
Veldhuis MP, Gommers MI, Olff H, Berg MP (2018) Spatial redistribution of nutrients by large herbivores and dung beetles in a savanna ecosystem. Journal of Ecology, 106, 422-433.
DOI URL |
[28] |
Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabará MG, Salamon JA, Swift MJ, Varela A, Vasconcelos HL, White D, Zou XM (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate- dependent. Global Change Biology, 14, 2661-2677.
DOI URL |
[29] |
Wang JZ, Wang DL, Li CQ, Seastedt TR, Liang CZ, Wang L, Sun W, Liang MW, Li Y (2018) Feces nitrogen release induced by different large herbivores in a dry grassland. Ecological Applications, 28, 201-211.
DOI URL |
[30] |
Wang XY, Li FY, Wang YN, Liu XM, Cheng JW, Zhang JZ, Baoyin T, Bardgett RD (2020) High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant and Soil, 448, 265-276.
DOI URL |
[31] |
Wang YN, Li FY, Song X, Wang XS, Suri GG, Baoyin T (2020) Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agriculture, Ecosystems & Environment, 303, 107119.
DOI URL |
[32] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[33] |
Wu XW, Duffy J, Reich P, Sun SC (2011) A brown-world cascade in the dung decomposer food web of an alpine meadow: Effects of predator interactions and warming. Ecological Monographs, 81, 313-328.
DOI URL |
[34] |
Wu XW, Griffin JN, Sun SC (2014) Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow. Journal of Animal Ecology, 83, 546-556.
DOI PMID |
[35] | Wu XW, Li GY, Sun SC (2011) Effect of rainfall regimes on the decomposition rate of yak dung in an alpine meadow of northwest Sichuan Province, China. Acta Ecologica Sinica, 31, 28-36. (in Chinese with English abstract) |
[ 吴新卫, 李国勇, 孙书存 (2011) 降水量对川西北高寒草甸牦牛粪分解速率的影响. 生态学报, 31, 28-36.] | |
[36] |
Yang XD, Yang Z, Warren M, Chen J (2012) Mechanical fragmentation enhances the contribution of Collembola to leaf litter decomposition. European Journal of Soil Biology, 53, 23-31.
DOI URL |
[37] | Yin WY (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英(1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[38] | Zhai N, Alatenbagen, Liu XM (2018) Feeding preferences and daily activity rhythms of dung beetles on the Inner Mongolian steppe. Chinese Journal of Applied Entomology, 55, 428-437. (in Chinese with English abstract) |
[ 翟娜, 阿拉腾巴根, 刘新民 (2018) 内蒙古典型草原粪食性金龟的取食偏好和日活动节律特征. 应用昆虫学报, 55, 428-437.] | |
[39] |
Zhu YH, Merbold L, Leitner S, Pelster DE, Okoma SA, Ngetich F, Onyango AA, Pellikka P, Butterbach-Bahl K (2020) The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant and Soil, 451, 325-343.
DOI URL |
[1] | 程建伟, 徐满厚, 窦永静, 王亚东, 王桠楠, 刘新民, 李永宏. 内蒙古典型草原马粪分解过程中节肢动物群落的季节动态变化[J]. 生物多样性, 2024, 32(6): 24018-. |
[2] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[3] | 谢致敬, 刘相钰, 孙晓铭, 刘继亮, 刘占锋, 张晓珂, 陈军, 杨效东, 朱波, 柯欣, 吴东辉. 中国土壤动物多样性监测网络建设、进展与展望[J]. 生物多样性, 2023, 31(12): 23365-. |
[4] | 潘雪, 刘冬. 2020-2021年世界甲螨亚目新分类单元和近15年中国发表新种概况——纪念中国甲螨学开创100周年[J]. 生物多样性, 2022, 30(12): 22193-. |
[5] | 王军, 赵超. 中国菌食性管蓟马物种多样性及分布格局[J]. 生物多样性, 2022, 30(12): 22128-. |
[6] | 李帆, 王党军, 林小元, 纪康, 叶露萍, 黄超, 郑勇, Zhun Mao, 左娟. 八大公山亚热带森林木质残体中大型无脊椎动物群落特征[J]. 生物多样性, 2022, 30(12): 21476-. |
[7] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[8] | 徐聪, 张飞宇, 俞道远, 孙新, 张峰. 土壤动物的分子分类预测策略评估[J]. 生物多样性, 2022, 30(12): 22252-. |
[9] | 冯怡琳, 王永珍, 林永一, 赵文智, 高俊伟, 刘继亮. 戈壁生态系统蚁穴微生境对大型土壤动物多样性的影响[J]. 生物多样性, 2022, 30(12): 22282-. |
[10] | 刘厶瑶, 李柱, 柯欣, 孙丽娜, 吴龙华, 赵杰杰. 贵州省典型汞铊矿区周边农田土壤跳虫群落特征[J]. 生物多样性, 2022, 30(12): 22265-. |
[11] | 傅声雷, 刘满强, 张卫信, 邵元虎. 土壤动物多样性的地理分布及其生态功能研究进展[J]. 生物多样性, 2022, 30(10): 22435-. |
[12] | 高梅香, 刘启龙, 朱家祺, 赵博宇, 杜嘉, 吴东辉. 中国农田土壤动物长期监测样地科学调查监测的实施方法[J]. 生物多样性, 2022, 30(1): 21265-. |
[13] | 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987. |
[14] | 莫畏, 王志良, 李猷, 郭建军, 张润志. 北京近郊深土层动物群落结构特征[J]. 生物多样性, 2018, 26(3): 248-257. |
[15] | 张宇, 肖正高, 蒋林惠, 钱蕾, 陈小云, 陈法军, 胡锋, 刘满强. 施氮水平影响蚯蚓介导的番茄生长及抗虫性[J]. 生物多样性, 2018, 26(12): 1296-1307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn