生物多样性 ›› 2016, Vol. 24 ›› Issue (11): 1240-1248. DOI: 10.17520/biods.2015345 cstr: 32101.14.biods.2015345
所属专题: 生物多样性与生态系统功能; 土壤生物与土壤健康
李香真1,,A;*, 郭良栋2, 李家宝1, 姚敏杰1
收稿日期:
2015-12-07
接受日期:
2016-03-29
出版日期:
2016-11-20
发布日期:
2016-12-14
通讯作者:
李香真
基金资助:
Xiangzhen Li1,*, Liangdong Guo2, Jiabao Li1, Minjie Yao1
Received:
2015-12-07
Accepted:
2016-03-29
Online:
2016-11-20
Published:
2016-12-14
Contact:
Li Xiangzhen
摘要:
土壤微生物多样性研究是整个生态系统研究中最薄弱的环节之一。高通量测序技术和生物信息学方法的快速发展极大地促进了土壤微生物多样性监测研究的深度和广度。目前世界范围内已经开展了一些综合的微生物多样性研究计划, 如地球微生物计划。这些计划存在的主要问题是缺少动态的监测、研究方法不统一、数据整合困难等。中国土壤微生物多样性监测网(Soil Microbial Observation Network, SMON)是中国生物多样性监测与研究网络(Chinese Biodiversity Monitoring and Research Network, Sino BON)的重要组成部分, 本文中我们对该监测网的建设提出了一些思考。在监测布局上建议选择我国南北水热梯度下的森林生态系统、东西降雨梯度下的草原生态系统、典型湿地生态系统及重要农田生态系统, 同时依托现已建成的生物多样性监测网络观测点或大样地, 布设监测样点, 利用现代环境基因组学和生物信息学技术, 重点围绕土壤微生物群落和功能基因组的组成与多样性, 开展长期定点的动态监测。监测的结果将以名录、数据集或图鉴的形式发布, 包括中国典型生态系统中土壤细菌、古菌、真菌与地衣、土壤宏基因组和重要功能基因的组成和多样性等数据, 同时建设土壤生物大数据平台, 达到监测数据的储存、查询、分析、下载、成图的功能。通过土壤微生物多样性监测, 将阐明我国重要森林、草地、湿地、农田生态系统中土壤微生物组成、多样性、功能基因的时空变化特征和驱动机制, 建立土壤微生物多样性变化与生态系统功能的关系及相关的模型, 预测全球环境条件变化下土壤微生物的演变规律, 为土壤微生物多样性资源的保护和利用提供科学依据。
李香真, 郭良栋, 李家宝, 姚敏杰 (2016) 中国土壤微生物多样性监测的现状和思考. 生物多样性, 24, 1240-1248. DOI: 10.17520/biods.2015345.
Xiangzhen Li, Liangdong Guo, Jiabao Li, Minjie Yao (2016) Soil microbial diversity observation in China: current situation and future consideration. Biodiversity Science, 24, 1240-1248. DOI: 10.17520/biods.2015345.
监测内容 Observation items | 监测方法 Approaches | 主要指标 Main aims |
---|---|---|
监测点的基本生态、地理信息数据 采集 Ecological and geographic information collection | 野外直接测量、数据收集等 Field observation, data collection | 地理坐标、气候参数(温度、降雨等)、植被组成、生物量、土地利用类型等 Geographic coordinate, climate parameters (temperature, precipitation), plant composition and biomass, land use types |
土壤微生物的群落组成和多样性(真 菌、细菌、古菌等) Soil microbial community composition and diversity (fungi, bacteria, archaea) | 高通量测序(Hiseq、Miseq)、生物信 息学分析 High-throughput sequencing (Hiseq, Miseq), bioinformatics analysis | 鉴定出微生物的系统组成和多样性 Revealing soil microbial community composition and diversity |
土壤基因组的组成和多样性 Soil genomic composition and diversity | 高通量测序(Hiseq)、定量PCR High-throughput sequencing, quantitative PCR | 鉴定出土壤微生物群落的功能基因组成和多样性 Revealing soil microbial functional gene composition and diversity |
重点森林样地大型真菌监测 Observation of macrofungi in typical forest ecosystems | 野外样线调查、形态观察、生理特 征检测等 Field study, morphology observation, physiology study | 完成重点森林样地的大型真菌组成和多样性调查及生理生态特征描述 Revealing soil macrofungal composition, diversity and physiological characteristics |
土壤微生物过程监测 Observation of microbial processes | 野外直接测定 Field measurement | 重点监测与温室气体排放、养分循环相关的过程 Revealing the processes related to greenhouse gas flux and nutrient cycling |
土壤微生物的分离、纯化和生理鉴定 Isolation, purification and characteristics of soil microorganisms | 微生物分离培养技术 Microbial isolation and culturing techniques | 分离纯化鉴定重要的微生物菌种资源 Isolating and identifying important microorganisms |
表1 土壤微生物多样性监测的主要内容、方法和指标
Table 1 Observation items, approaches and main aims of soil microbial diversity
监测内容 Observation items | 监测方法 Approaches | 主要指标 Main aims |
---|---|---|
监测点的基本生态、地理信息数据 采集 Ecological and geographic information collection | 野外直接测量、数据收集等 Field observation, data collection | 地理坐标、气候参数(温度、降雨等)、植被组成、生物量、土地利用类型等 Geographic coordinate, climate parameters (temperature, precipitation), plant composition and biomass, land use types |
土壤微生物的群落组成和多样性(真 菌、细菌、古菌等) Soil microbial community composition and diversity (fungi, bacteria, archaea) | 高通量测序(Hiseq、Miseq)、生物信 息学分析 High-throughput sequencing (Hiseq, Miseq), bioinformatics analysis | 鉴定出微生物的系统组成和多样性 Revealing soil microbial community composition and diversity |
土壤基因组的组成和多样性 Soil genomic composition and diversity | 高通量测序(Hiseq)、定量PCR High-throughput sequencing, quantitative PCR | 鉴定出土壤微生物群落的功能基因组成和多样性 Revealing soil microbial functional gene composition and diversity |
重点森林样地大型真菌监测 Observation of macrofungi in typical forest ecosystems | 野外样线调查、形态观察、生理特 征检测等 Field study, morphology observation, physiology study | 完成重点森林样地的大型真菌组成和多样性调查及生理生态特征描述 Revealing soil macrofungal composition, diversity and physiological characteristics |
土壤微生物过程监测 Observation of microbial processes | 野外直接测定 Field measurement | 重点监测与温室气体排放、养分循环相关的过程 Revealing the processes related to greenhouse gas flux and nutrient cycling |
土壤微生物的分离、纯化和生理鉴定 Isolation, purification and characteristics of soil microorganisms | 微生物分离培养技术 Microbial isolation and culturing techniques | 分离纯化鉴定重要的微生物菌种资源 Isolating and identifying important microorganisms |
1 | Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE, 4, e6372. |
2 | Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B, 368. doi: 10.1098/rstb.2013.0122 |
3 | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336. |
4 | Dubilier N, McFall-Ngai M, Zhao LP (2015) Create a global microbiome effort. Nature, 526, 631-641. |
5 | Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, USA, 103, 626-631. |
6 | Gao C, Shi NN, Liu YX, Peay KG, Zheng Y, Ding Q, Mi XC, Ma KP, Wubet T, Buscot F, Guo LD (2013) Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Molecular Ecology, 22, 3403-3414. |
7 | Gao C, Zhang Y, Shi NN, Zheng Y, Chen L, Wubet T, Bruelheide H, Both S, Buscot F, Ding Q, Erfmeier A, Kühn P, Nadrowski K, Scholten T, Guo LD (2015) Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 205, 771-785. |
8 | Gilbert JA, Jansson JK, Knight R (2014) The Earth Micro- biome project: successes and aspirations. BMC Biology, 12, 69. doi: 10.1186/s12915-014-0069-1. |
9 | Gonzalez A, King A, Robeson II MS, Song S, Shade A, Metcalf JL, Knight R (2012) Characterizing microbial communities through space and time. Current Opinion in Biotechnology, 23, 431-436. |
10 | Jia ZJ (2016) 2015 Nobel Prize and soil microbiology—culture-dependent study warrants more attention. Acta Pedologica Sinica, 53, 12-15. (in Chinese with English abstract) |
[贾仲君 (2016) 2015年诺贝尔生理学或医学奖的启示——土壤微生物分离培养推动了寄生虫病防治. 土壤学报, 53, 12-15.] | |
11 | Lemanceau P (2011) EcoFINDERS: characterizing biodiversity and soil functioning in Europe. 23 partners from 10 European countries and China. Biofutur, 326, 56-58. |
12 | Liu C, Li JB, Rui JP, An JX, Li XZ (2015) The applications of the 16S rRNA gene in microbial ecology: current situation and problems. Acta Ecologica Sinica, 35, 1-9. (in Chinese with English abstract) |
[刘驰, 李家宝, 芮俊鹏, 安家兴, 李香真 (2015) 16S rRNA 基因在微生物生态学中的应用: 现状和问题. 生态学报, 35, 1-9.] | |
13 | Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH (2014) High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology and Biochemistry, 70, 113-122. |
14 | Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH (2015) Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology and Biochemistry, 83, 29-39. |
15 | Lu YH, Fu SL, Chu HY, Yang YF, Liu ZF (2015) Recent advances in global change and soil biology. Science Foundation in China, 29(1), 19-24. (in Chinese with English abstract) |
[陆雅海, 傅声雷, 褚海燕, 杨云锋, 刘占锋 (2015) 全球变化背景下的土壤生物学研究进展. 中国科学基金, 29(1), 19-24.] | |
16 | Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biology and Fertility of Soils, 40, 363-385. |
17 | Ma KP (2015) Biodiversity monitoring in China: from CForBio to Sino BON. Biodiversity Science, 23, 1-2. |
[马克平 (2015) 中国生物多样性监测网络建设: 从CForBio到Sino BON. 生物多样性, 23, 1-2.] | |
18 | Oberhardt MA, Zarecki R, Gronow S, Lang E, Klenk H, Gophna U, Ruppin E (2015) Harnessing the landscape of microbial culture media to predict new organism-media pairings. Nature Communications, 6, 8493. |
19 | Ohtonen R, Aikio S, Väre H (1997) Ecological theories in soil biology. Soil Biology and Biochemistry, 29, 1613-1619. |
20 | Orgiazzi A, Dunbar MB, Panagos P, de Groot GA, Lemanceau P (2015) Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biology and Biochemistry, 80, 244-250. |
21 | Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME Journal, 5, 389-402. |
22 | Rui JP, Li JB, Wang SP, An JX, Liu W-T, Lin QY, Yang YF, He ZL, Li XZ (2015) Responses of bacterial communities to simulated climate changes in alpine meadow soil of Qinghai-Tibet Plateau. Applied and Environmental Microbiology, 81, 6070-6077. |
23 | Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N (2013) A meta-analysis of changes in bacterial and archaeal communities with time. ISME Journal, 7, 1493-1506. |
24 | Shen CC, Liang WJ, Shi Y, Lin XG, Zhang HY, Wu X, Xie G, Chain P, Grogan P, Chu HY (2014) Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology, 95, 3190-3202. |
25 | Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204-211. |
26 | Song CQ, Wu JS, Lu YH, Shen QR, He JZ, Huang QY, Jia ZJ, Leng SY, Zhu YG (2013) Advances of soil microbiology in the last decade in China. Advances in Earth Science, 28, 1087-1105. (in Chinese with English abstract) |
[宋长青, 吴金水, 陆雅海, 沈其荣, 贺纪正, 黄巧云, 贾仲君, 冷疏影, 朱永官 (2013) 中国土壤微生物学研究十年回顾. 地球科学进展, 28, 1087-1105.] | |
27 | Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, Kesel AD, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science, 346, 1256688. |
28 | Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5, 240-245. |
29 | Veresoglou SD, Halley JM, Rillig MC (2015) Extinction risk of soil biota. Nature Communications, 6, 8862. |
30 | Wang XB, Van Nostrand JD, Deng Y, Lu XT, Wang C, Zhou JJ, Han XG (2015) Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China’s grasslands. FEMS Microbiology Ecology, 91. doi: 10.1093/femsec/fiv133. |
31 | Yao MJ, Rui JP, Li JB, Dai YM, Bai YF, Heděnec P, Wang JM, Zhang SH, Pei KQ, Liu C, Wang YF, He ZL, Frouz J, Li XZ (2014) Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology and Biochemistry, 79, 81-90. |
[1] | 吴晓晴 张美惠 葛苏婷 李漫淑 宋坤 沈国春 达良俊 张健. 上海近自然林重建过程中木本植物物种多样性与地上生物量的时空动态——以闵行区生态岛为例[J]. 生物多样性, 2025, 33(5): 24444-. |
[2] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[3] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[4] | 周昊, 王茗毅, 张楚格, 肖治术, 欧阳芳. 昆虫旅馆在独栖蜂多样性保护中的现状与挑战[J]. 生物多样性, 2025, 33(5): 24472-. |
[5] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[6] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[7] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[8] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[9] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[10] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[11] | 徐欢, 辛凤飞, 施宏亮, 袁琳, 薄顺奇, 赵欣怡, 邓帅涛, 潘婷婷, 余婧, 孙赛赛, 薛程. 生态修复技术集成应用对长江口北支生境与鸟类多样性提升效果评估[J]. 生物多样性, 2025, 33(5): 24478-. |
[12] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[13] | 王太, 宋福俊, 张永胜, 娄忠玉, 张艳萍, 杜岩岩. 河西走廊内陆河水系鱼类多样性及资源现状[J]. 生物多样性, 2025, 33(4): 24387-. |
[14] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[15] | 张浩斌, 肖路, 刘艳杰. 夜间灯光对外来入侵植物和本地植物群落多样性和生长的影响[J]. 生物多样性, 2025, 33(4): 24553-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn