生物多样性 ›› 2008, Vol. 16 ›› Issue (5): 462-469. DOI: 10.3724/SP.J.1003.2008.08108 cstr: 32101.14.SP.J.1003.2008.08108
所属专题: 生物入侵
张亦默1, 王卿2, 卢蒙1, 贾昕1, 耿宇鹏1, 李博1,*()
收稿日期:
2008-04-30
接受日期:
2008-09-17
出版日期:
2008-09-20
发布日期:
2008-09-20
通讯作者:
李博
基金资助:
Yimo Zhang1, Qing Wang2, Meng Lu1, Xin Jia1, Yupeng Geng1, Bo Li1,*()
Received:
2008-04-30
Accepted:
2008-09-17
Online:
2008-09-20
Published:
2008-09-20
Contact:
Bo Li
摘要:
互花米草(Spartina alterniflora)于20世纪70年代被引入中国, 目前已在东部沿海盐沼湿地中广泛分布, 成为海岸带盐沼中危害严重的入侵植物之一。为了研究互花米草在中国入侵区中的适应机制,揭示遗传分化和表型可塑性在该物种成功入侵中的作用,本研究沿纬度梯度在南起广东(22°N)、北至天津(39°N)的沿海样带上采集了10个种群的样本, 通过同质园实验比较了不同纬度来源的种群在生活史和生长特征方面是否存在遗传分化, 并平行设置高低两个水位处理以比较互花米草对水位变化(不同高程生境条件)的可塑性反应。结果表明, 在所研究的互花米草17个性状中有12个存在显著的种群间差异。其中, 平均开花日期和相对生长率(植株高度)表现出显著的纬度梯度变异: 随着纬度的升高, 开花时间提前,相对生长速率(植株高度)趋于增加。同时17个性状中有9个在不同水位处理之间存在显著差异。这些结果表明, 遗传分化可能是互花米草能够快速占据广阔分布区的重要原因之一, 而表型可塑性可能对互花米草在小尺度上占据不同高程环境的过程有重要作用。
张亦默, 王卿, 卢蒙, 贾昕, 耿宇鹏, 李博 (2008) 中国东部沿海互花米草种群生活史特征的纬度变异与可塑性. 生物多样性, 16, 462-469. DOI: 10.3724/SP.J.1003.2008.08108.
Yimo Zhang, Qing Wang, Meng Lu, Xin Jia, Yupeng Geng, Bo Li (2008) Variation and phenotypic plasticity in life history traits of Spartina alterniflora along the east coast of China. Biodiversity Science, 16, 462-469. DOI: 10.3724/SP.J.1003.2008.08108.
种群代码 Population code | 采样地点 Locality | 地理坐标 Location |
---|---|---|
1 ZH | 广东珠海 Zhuhai, Guangdong | 22°26′N, 113°39′E |
2 XM | 福建厦门 Xiamen, Fujian | 24°28′N, 117°58′E |
3 ND | 福建宁德 Ningde, Fujian | 26°37′N, 119°37′E |
4 WL | 浙江台州 Taizhou, Zhejiang | 28°21′N, 121°37′E |
5 NH | 上海南汇 Nanhui, Shanghai | 30°51′N, 121°51′E |
6 CM | 上海崇明 Chongming, Shanghai | 31°31′N, 121°58′E |
7 DF | 江苏盐城 Yancheng, Jiangsu | 33°16′N, 120°45′E |
8 GY | 江苏连云港 Lianyungang, Jiangsu | 34°47′N, 119°13′E |
9 LZ | 山东莱州 Laizhou, Shandong | 37°13′N, 119°51′E |
10 TJ | 天津塘沽 Tanggu, Tianjin | 39°00′N, 117°43′E |
表1 10个互花米草种群的地理位置
Table 1 Localities of 10 Spartina alterniflora populations
种群代码 Population code | 采样地点 Locality | 地理坐标 Location |
---|---|---|
1 ZH | 广东珠海 Zhuhai, Guangdong | 22°26′N, 113°39′E |
2 XM | 福建厦门 Xiamen, Fujian | 24°28′N, 117°58′E |
3 ND | 福建宁德 Ningde, Fujian | 26°37′N, 119°37′E |
4 WL | 浙江台州 Taizhou, Zhejiang | 28°21′N, 121°37′E |
5 NH | 上海南汇 Nanhui, Shanghai | 30°51′N, 121°51′E |
6 CM | 上海崇明 Chongming, Shanghai | 31°31′N, 121°58′E |
7 DF | 江苏盐城 Yancheng, Jiangsu | 33°16′N, 120°45′E |
8 GY | 江苏连云港 Lianyungang, Jiangsu | 34°47′N, 119°13′E |
9 LZ | 山东莱州 Laizhou, Shandong | 37°13′N, 119°51′E |
10 TJ | 天津塘沽 Tanggu, Tianjin | 39°00′N, 117°43′E |
![]() |
表2 纬度和水位对互花米草生活史和生长性状影响的双因子方差分析结果
Table 2 Summary of two-way ANOVA for testing interclonal variation, effects of water level, and their interactions on 17 traits of Spartina alterniflora
![]() |
图2 10个互花米草种群开花时间(a)及不同水位条件下(○高水位;●低水位)相对生长率(植株高度)(b)随纬度的变化
Fig. 2 Effects of latitude on days to blooming of S. alterniflora populations (a), and relative growth rate (RGRH) at high (open circles) and low (filled circles) water levels (b)
图3 水位对10个互花米草种群9个生活史性状(平均值±标准误)的影响 种群代码 Population codes: (●) 1ZH; (○) 2XM; (▼) 3ND; (△) 4WL; (■) 5NH; (□) 6CM; (◆) 7DF; (◇) 8GY; (▲) 9LZ; (▽) 10TJ
Fig. 3 The effects of water levels on the means (six replicates) of nine life history traits of Spartina alterniflora. Vertical bars represent the standard errors of the means across six replicates.
[1] | An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007) Spartina invasion in China: implications for invasive species management and future research. Weed Research, 47,183-191. |
[2] | Bertness MD (1991) Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology, 72,138-148. |
[3] | Bertness MD, Shumway SW (1992) Consumer driven pollen limitation of seed production in marsh grasses. American Journal of Botany, 79,288-293. |
[4] |
Bertness MD, Wikler K, Chatkupt T (1992) Flood tolerance and the distribution of Iva frutescens across New England salt marshes . Oecologia, 91,171-178.
URL PMID |
[5] | Chapin FS III, Chapin MC (1981) Ecotypic differentiation of growth processes in Carex aquatilis along latitudinal and local gradients. Ecology, 62,1000-1009. |
[6] | Daehler CC, Strong DR (1994) Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California: the influence of herbivory, pollination, and establishment site. American Journal of Botany, 81,307-313. |
[7] | Deng Z, An S, Zhou C, Wang Z, Zhi Y, Wang, Y, Shi S, Chen L, Zhao C(2007) Genetic structure and habitat selection of the tall form Spartina alterniflora Loisel. in China. Hydrobiologia, 583,195-204. |
[8] | Landin MC (1991) Growth habits and other considerations of smooth cordgrass, Spartina alterniflora Loisel., Washington Sea Grant Program, University of Washington, Seattle. |
[9] | Li B, Suzuki J, Hara T (1998) Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia, 115,293-301. |
[10] | Li B, Shibuya T, Yogo Y, Hara T, Yokozawa M (2001) Interclonal differences, plasticity and trade-offs of life history traits of Cyperus esculentus in relation to water availability. Plant Species Biology, 16,193-207. |
[11] | Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecological Monographs, 72,261-280. |
[12] | Olsson K, Ågren J (2002) Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria. Journal of Evolutionary Biology, 15,983-996. |
[13] | Pennings SC, Callaway RM (1992) Salt-marsh plant zonation: the relative importance of competition and physical factors. Ecology, 73,681-690. |
[14] | Perkins EJ, Streever WJ, Davis E, Fredrickson HL (2002) Development of amplified fragment length polymorphism markers for Spartina alterniflora. Aquatic Botany, 74,85-95. |
[15] | Riggs SR (1992) Distribution of Spartina alterniflora in Padilla Bay, Washington, in 1991. Padilla Bay National Estuarine Research Reserve Technical Report 3, Washington State Department of Ecology, Mount Vernon, Washington. |
[16] |
Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld MT, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science, 287,1770-1774.
DOI URL PMID |
[17] | Sayce K (1988) Introduced cordgrass, Spartina alterniflora Loisel., in salt marshes and tidelands of Willapa Bay, Washington. Willapa National Wildlife Refuge Report, Ilwaca,Washington. |
[18] | Shea ML, Warren RS, Niering WA (1975) Biochemical and transplantation studies of the growth form of Spartina alterniflora on Connecticut salt marshes. Ecology, 56,461-466. |
[19] | Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44,363-383. |
[20] | Thompson JD (1991) The biology of an invasive plant: what makes Spartina anglica so successful. BioScience, 41,393-401. |
[21] | Vitousek PM, D'Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. American Scientist, 84,218-228. |
[22] | Wang Q (王卿), An SQ (安树青), Ma ZJ (马志军), Zhao B (赵斌), Chen JK (陈家宽), Li B (李博) (2006) Invasive Spartina alterniflora: biology, ecology and management(入侵植物互花米草——生物学、生态学及管理). Acta Phytotaxonomica Sinica(植物分类学报), 44,559-588. (in Chinese with English abstract) |
[1] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[2] | 张瑶, 孙君瑶, 李伟. 雅鲁藏布江流域不同海拔梯度下消落区植被NDVI的时空变化趋势及驱动因素[J]. 生物多样性, 2024, 32(5): 23432-. |
[3] | 龙诗怡, 张博博, 夏宇辰, 费杨帆, 孟亚妮, 吕冰薇, 宋月青, 郑普, 郭陶然, 张健, 黎绍鹏. 本地群落多样性和时间稳定性对加拿大一枝黄花生物量的影响[J]. 生物多样性, 2024, 32(11): 24263-. |
[4] | 熊飞, 刘红艳, 翟东东, 段辛斌, 田辉伍, 陈大庆. 基于基因组重测序的长江上游瓦氏黄颡鱼群体遗传结构[J]. 生物多样性, 2023, 31(4): 22391-. |
[5] | 吴浩, 余玉蓉, 王佳钰, 赵媛博, 高娅菲, 李小玲, 卜贵军, 薛丹, 吴林. 低水位增加灌木多样性和生物量但降低土壤有机碳含量: 以鄂西南贫营养泥炭地为例[J]. 生物多样性, 2023, 31(3): 22600-. |
[6] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[7] | 陶克涛, 白东义, 图格琴, 赵若阳, 安塔娜, 铁木齐尔·阿尔腾齐米克, 宝音德力格尔, 哈斯, 芒来, 韩海格. 基于基因组SNPs对东亚家马不同群体遗传多样性的评估[J]. 生物多样性, 2022, 30(5): 21031-. |
[8] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[9] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[10] | 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云. 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(4): 419-427. |
[11] | 于良瑞, 朱政财, 潘晓云. 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较[J]. 生物多样性, 2020, 28(6): 651-657. |
[12] | 陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强. 基于功能性状的水杉原生母树种群生境适应策略[J]. 生物多样性, 2020, 28(3): 296-302. |
[13] | 翁茁先, 黄佳琼, 张仕豪, 余锴纯, 钟福生, 黄勋和, 张彬. 利用线粒体COI基因揭示中国乌骨鸡遗传多样性和群体遗传结构[J]. 生物多样性, 2019, 27(6): 667-676. |
[14] | 武星彤, 陈璐, 王敏求, 张原, 林雪莹, 李鑫玉, 周宏, 文亚峰. 丹霞梧桐群体遗传结构及其遗传分化[J]. 生物多样性, 2018, 26(11): 1168-1179. |
[15] | 刘青青, 董志军. 基于线粒体COI基因分析钩手水母的群体遗传结构[J]. 生物多样性, 2018, 26(11): 1204-1211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn