生物多样性 ›› 2022, Vol. 30 ›› Issue (8): 22067. DOI: 10.17520/biods.2022067
所属专题: 昆虫多样性与生态功能
收稿日期:
2022-02-09
接受日期:
2022-03-18
出版日期:
2022-08-20
发布日期:
2022-08-31
通讯作者:
中村彰宏
作者简介:
*E-mail: a.nakamura@xtbg.ac.cn基金资助:
Runming Yang1,2, Akihiro Nakamura1,3,*()
Received:
2022-02-09
Accepted:
2022-03-18
Online:
2022-08-20
Published:
2022-08-31
Contact:
Akihiro Nakamura
摘要:
光污染被认为是“环境陷阱”, 可以聚集周围的昆虫。而昆虫的聚集和光源本身可能会吸引捕食性昆虫在光源附近定居繁殖, 从而改变昆虫群落的结构, 威胁昆虫多样性和生态系统服务功能。蚂蚁(膜翅目)是昆虫中的优势类群, 能提供多种生态系统服务功能, 其中有许多巢居型蚂蚁利用中空的树枝或者竹子筑巢繁殖, 是森林中非常重要的捕食者和分解者。然而, 光污染对巢居蚂蚁群落的影响尚不清楚。本研究以巢居蚂蚁为研究对象, 探究在雨季和干季3种不同生境(原始林、次生林、橡胶林)中发光二极管(LED灯)在空间距离上对巢居蚂蚁筑巢模式以及群落组成的影响。我们在3种生境中共安装了15个LED灯, 并在距离光源0 m、10 m、50 m和100 m处设置不同入口大小的人工竹巢, 7周后回收。竹巢中共发现蚂蚁40种形态种, 隶属于12个属, 其中弓背蚁属(Camponotus)是优势属。接近光源处的竹巢占用率最高, 且在干季最明显; 在远离光源处(10-100 m)占用率较低, 并且在3种不同的生境呈现相同的模式。竹巢入口大小对竹巢占用率没有显著影响。雨季和干季的蚂蚁群落组成差异显著; 干季原始林和次生林、次生林和橡胶林蚂蚁群落组成有弱显著差异; 在3种生境中不同灯距下蚂蚁群落组成没有显著差异。我们的研究表明, 光污染增加了巢居蚂蚁在光源处的筑巢密度, 影响蚂蚁群落组成和空间分布。
杨润明, 中村彰宏 (2022) 巢居蚂蚁更倾向于在人造光源附近定居繁殖. 生物多样性, 30, 22067. DOI: 10.17520/biods.2022067.
Runming Yang, Akihiro Nakamura (2022) Cavity-dwelling ants tend to colonize close to artificial light. Biodiversity Science, 30, 22067. DOI: 10.17520/biods.2022067.
图1 人工竹巢制作(a, b)和野外设置(c, d; 竹巢被水平固定在树干表面, 离地面约1.5 m, 保持开孔向下以防止雨水进入)
Fig. 1 Artificial bamboo nests production (a and b) and setting in the field (c and d; nests were fixed on the tree trunk, 1.5 m away from the ground and keeping the hole downward for prevent raining water)
属 Genus | 干季 Dry season | 雨季 Rainy season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | 原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | |||||||
NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | |
弓背蚁属 Camponotus | 6 | 17 | 4 | 8 | 6 | 19 | 3 | 6 | 2 | 13 | 3 | 12 |
举腹蚁属 Crematogaster | 1 | 1 | 2 | 6 | 2 | 7 | 2 | 3 | 2 | 9 | 0 | 0 |
臭蚁属 Dolichoderus | 1 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
大头蚁属 Pheidole | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
菲臭蚁属 Philidris | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
多刺蚁属 Polyrhachis | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 2 | 2 |
棒角蚁属 Rhopalomastix | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
酸臭蚁属 Tapinoma | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
狡臭蚁属 Technomyrmex | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 3 | 0 | 0 | 2 | 3 |
铺道蚁属 Tetramorium | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
虹臭蚁属 Iridomyrmex | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
小家蚁属 Monomorium | 0 | 0 | 1 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 2 | 10 |
合计 Total | 11 | 28 | 9 | 18 | 13 | 34 | 11 | 22 | 5 | 23 | 13 | 32 |
表1 雨季和干季3种生境中竹巢内蚂蚁属及形态种分类信息
Table 1 Taxonomic information of ants found in artificial bamboo nests
属 Genus | 干季 Dry season | 雨季 Rainy season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | 原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | |||||||
NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | |
弓背蚁属 Camponotus | 6 | 17 | 4 | 8 | 6 | 19 | 3 | 6 | 2 | 13 | 3 | 12 |
举腹蚁属 Crematogaster | 1 | 1 | 2 | 6 | 2 | 7 | 2 | 3 | 2 | 9 | 0 | 0 |
臭蚁属 Dolichoderus | 1 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
大头蚁属 Pheidole | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
菲臭蚁属 Philidris | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
多刺蚁属 Polyrhachis | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 2 | 2 |
棒角蚁属 Rhopalomastix | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
酸臭蚁属 Tapinoma | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
狡臭蚁属 Technomyrmex | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 3 | 0 | 0 | 2 | 3 |
铺道蚁属 Tetramorium | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
虹臭蚁属 Iridomyrmex | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
小家蚁属 Monomorium | 0 | 0 | 1 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 2 | 10 |
合计 Total | 11 | 28 | 9 | 18 | 13 | 34 | 11 | 22 | 5 | 23 | 13 | 32 |
模型 Model | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants |
---|---|---|
AIC | AIC | |
R~ D + S + (1 | T) + D:S | 780 | 591 |
R ~ D + H + S + (1 | T) + D:S | 782 | 593 |
R ~ D + H + S + (1 | T) + D:S + D:H | 783 | 594 |
R ~ D + H + S + (1 | T) + D:S + S:H | 783 | 596 |
R~ D + S + (1 | T) | 784 | 592 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H | 784 | 597 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H + D:H:S | 785 | 596 |
表2 存在蚂蚁的竹巢和被蚂蚁占用的竹巢最佳glmmTMB模型筛选。加粗AIC值表示最小值, 模型为最佳模型。
Table 2 The glmmTMB best model selection of bamboos with ants and bamboos with nesting ants. The bold AIC values indicate lowest value which is the best model.
模型 Model | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants |
---|---|---|
AIC | AIC | |
R~ D + S + (1 | T) + D:S | 780 | 591 |
R ~ D + H + S + (1 | T) + D:S | 782 | 593 |
R ~ D + H + S + (1 | T) + D:S + D:H | 783 | 594 |
R ~ D + H + S + (1 | T) + D:S + S:H | 783 | 596 |
R~ D + S + (1 | T) | 784 | 592 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H | 784 | 597 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H + D:H:S | 785 | 596 |
固定因子 Fixed effects | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants | ||||
---|---|---|---|---|---|---|
χ2 | df | P | χ2 | df | P | |
D | 11.245 | 1 | < 0.001 | 11.518 | 1 | < 0.001 |
S | 6.109 | 1 | 0.013 | 4.235 | 1 | 0.039 |
D:S | 5.501 | 1 | 0.019 | 1.713 | 1 | 0.191 |
表3 存在蚂蚁的竹巢和被蚂蚁占用的竹巢glmmTMB最佳模型(加粗P值表示< 0.05)
Table 3 The glmmTMB best models of bamboos with ants and bamboos with nesting ants. The bold P values indicate P < 0.05.
固定因子 Fixed effects | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants | ||||
---|---|---|---|---|---|---|
χ2 | df | P | χ2 | df | P | |
D | 11.245 | 1 | < 0.001 | 11.518 | 1 | < 0.001 |
S | 6.109 | 1 | 0.013 | 4.235 | 1 | 0.039 |
D:S | 5.501 | 1 | 0.019 | 1.713 | 1 | 0.191 |
图2 不同季节、生境和灯距下存在蚂蚁(a)和蚂蚁占用(b)的竹巢数量平均占比。 图上为标准误差线, 干季100 m处未设置竹巢, 上方数值表示灯距, PF为原始林, SF为次生林, RP为橡胶林。
Fig. 2 Mean proportion of bamboos occupied by ants (a) and nesting ants (b) at different distances away from the light source (0, 10, 50 and 100 m) across the three habitats and two seasons. Error bars are standard errors. Bamboo nests were not set at 100 m site in dry season. PF, Primary forest; SF, Secondary forest; RP, Rubber plantation.
图3 3种生境中存在蚂蚁(a)和蚂蚁占用(b)的不同竹巢数量平均占比。 图上为标准误差线, 上方数值表示竹巢入口大小, PF为原始林, SF为次生林, RP为橡胶林。
Fig. 3 Mean proportion of bamboos with different entrance size occupied by ants (a) and nesting ants (b) across the three habitats. Error bars are standard errors. PF, Primary forest; SF, Secondary forest; RP, Rubber plantation.
图4 雨季和干季3种生境中竹巢内蚂蚁群落非度量多维尺度分析(NMDS)
Fig. 4 Non-metric multidimensional scaling (NMDS) ordination of the ant assemblages found in the bamboo sticks placed in primary forest (PF), secondry forest (SF) and rubber plantation (RP) in dry and rainy seasons.
图5 3种生境中沿着灯距竹巢内蚂蚁群落组成非度量多维尺度分析(NMDS)。 原始林10 m处发现稀有种, 致使NMDS分析中出现极端离群值, 在图中已被移除。
Fig. 5 Non-metric multidimensional scaling (NMDS) ordination of the ant assemblages found in the bamboo sticks placed in primary forest (PF), secondry forest (SF) and rubber plantation (RP) along the distance. Rare species were found at 10 m in the primary forest, caused extreme outlier in NMDS analysis, which had been removed in the figure.
[1] | Agosti ED, Majer JD, Alonso LE, Schultz TR (2000) Ant:Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington. |
[2] |
Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography, 22, 15.
DOI URL |
[3] |
Armbrecht I, Perfecto I, Silverman E (2006) Limitation of nesting resources for ants in Colombian forests and coffee plantations. Ecological Entomology, 31, 403-410.
DOI URL |
[4] |
Arruda FV, Pesquero MA, Marcelino DG, Leite GA, Delabie JHC, Fagundes R (2016) Size and condition of bamboo as structural factors behind the vertical stratification of the bamboo-nesting ant community. Insectes Sociaux, 63, 99-107.
DOI URL |
[5] |
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRxiv, doi: 10.1101/132753.
DOI |
[6] |
Czaczkes TJ, Bastidas-Urrutia AM, Ghislandi P, Tuni C (2018) Reduced light avoidance in spiders from populations in light-polluted urban environments. The Science of Nature, 105, 64.
DOI URL |
[7] |
Davies TW, Bennie J, Cruse D, Blumgart D, Inger R, Gaston KJ (2017) Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. Global Change Biology, 23, 2641-2648.
DOI URL |
[8] |
Deblauwe I, Dekoninck W (2007) Diversity and distribution of ground-dwelling ants in a lowland rainforest in southeast Cameroon. Insectes Sociaux, 54, 334-342.
DOI URL |
[9] | Debout GDG, Dalecky A, Ngomi AN, McKey DB (2009) Dynamics of species coexistence: Maintenance of a plant- ant competitive metacommunity. Oikos, 118, 873-884. |
[10] |
Duarte C, Quintanilla-Ahumada D, Anguita C, Manríquez PH, Widdicombe S, Pulgar J, Silva-Rodríguez EA, Miranda C, Manríquez K, Quijón PA (2019) Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod. Environmental Pollution, 248, 565-573.
DOI URL |
[11] |
Durrant J, Botha LM, Green MP, Jones TM (2018) Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 330, 225-233.
DOI PMID |
[12] |
Dwyer RG, Bearhop S, Campbell HA, Bryant DM (2013) Shedding light on light: Benefits of anthropogenic illumination to a nocturnally foraging shorebird. Journal of Animal Ecology, 82, 478-485.
DOI PMID |
[13] |
Firebaugh A, Haynes KJ (2016) Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia, 182, 1203-1211.
PMID |
[14] | Frank KD (2009) Exploitation of artificial light at night by a diurnal jumping spider. Peckhamia, 52, 277-287. |
[15] |
Friedrich R, Philpott SM (2009) Nest-site limitation and nesting resources of ants (Hymenoptera: Formicidae) in urban green spaces. Environmental Entomology, 38, 600-607.
PMID |
[16] |
Grenis K, Tjossem B, Murphy SM (2015) Predation of larval Lepidoptera in habitat fragments varies spatially and temporally but is not affected by light pollution. Journal of Insect Conservation, 19, 559-566.
DOI URL |
[17] | Hammond J, Yi DZ, McLellan T, Zhao JW (2015) Situational Analysis Report: Xishuangbanna Autonomous Dai Prefecture, Yunnan Province, China. World Agroforestry Centre. |
[18] | Holldobler B, Wilson E (1990) The Ants. Harvard University Press, Cambridge, MA. |
[19] |
Jiménez-Soto E, Philpott SM (2015) Size matters: Nest colonization patterns for twig-nesting ants. Ecology and Evolution, 5, 3288-3298.
DOI PMID |
[20] |
Kalinkat G, Grubisic M, Jechow A, Schroer S, Hölker F (2021) Assessing long-term effects of artificial light at night on insects: What is missing and how to get there. Insect Conservation and Diversity, 14, 260-270.
DOI URL |
[21] | Keroumi AE, Naamani K, Soummane H, Dahbi A (2012) Seasonal dynamics of ant community structure in the Moroccan Argan Forest. Journal of Insect Science, 12, 94. |
[22] | Klimes P (2017) Diversity and specificity of ant-plant interactions in canopy communities:Insights from primary and secondary tropical forests in new Guinea. In: Ant-Plant Interactions (eds Oliveira PS, Koptur S), pp. 26-51. Cambridge University Press, Cambridge. |
[23] |
Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nature, 548, 206-209.
DOI URL |
[24] |
Longino JT, Coddington J, Colwell RK (2002) The ant fauna of a tropical rain forest: Estimating species richness three different ways. Ecology, 83, 689-702.
DOI URL |
[25] | Miller CR, Barton BT, Zhu LK, Radeloff VC, Oliver KM, Harmon JP, Ives AR (2017) Combined effects of night warming and light pollution on predator-prey interactions. Proceedings of the Royal Society B: Biological Sciences, 284, 20171195. |
[26] |
Mottl O, Yombai J, Fayle TM, Novotný V, Klimeš P (2020) Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica, 52, 277-287.
DOI URL |
[27] | Narendra A, Reid SF, Raderschall CA (2013) Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels. PLoS ONE, 8, e58801. |
[28] |
Owens ACS, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B (2020) Light pollution is a driver of insect declines. Biological Conservation, 241, 108259.
DOI URL |
[29] |
Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: Artificial nests maintain diversity of arboreal ants. Ecological Applications, 15, 1478-1485.
DOI URL |
[30] | Pilosof S, Porter MA, Pascual M, Kéfi S (2017) The multilayer nature of ecological networks. Nature Ecology & Evolution, 1, 101. |
[31] |
Powell S (2009) How ecology shapes caste evolution: Linking resource use, morphology, performance and fitness in a superorganism. Journal of Evolutionary Biology, 22, 1004-1013.
DOI PMID |
[32] |
Powell S, Costa AN, Lopes CT, Vasconcelos HL (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. Journal of Animal Ecology, 80, 352-360.
DOI PMID |
[33] | Sanders D, Gaston KJ (2018) How ecological communities respond to artificial light at night. Journal of Experimental Zoology, Part A: Ecological and Integrative Physiology, 329, 394-400. |
[34] | Sullivan SMP, Hossler K, Meyer LA (2019) Artificial lighting at night alters aquatic-riparian invertebrate food webs. Ecological Applications, 29, e01821. |
[35] |
Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853-856.
DOI PMID |
[36] | Ugolini A, Boddi V, Mercatelli L, Castellini C (2005) Moon orientation in adult and young sandhoppers under artificial light. Proceedings of the Royal Society B: Biological Sciences, 272, 2189-2194. |
[37] |
van Geffen KG, van Eck E, de Boer RA, Salis L, Berendse F, Veenendaal EM (2015) Artificial light at night inhibits mating in a Geometrid moth. Insect Conservation and Diversity, 8, 282-287.
DOI URL |
[38] |
van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D (2011) Effect of spectral composition of artificial light on the attraction of moths. Biological Conservation, 144, 2274-2281.
DOI URL |
[39] | Wielgoss A, Tscharntke T, Rumede A, Fiala B, Seidel H, Shahabuddin S, Clough Y (2014) Interaction complexity matters:Disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society B: Biological Sciences, 281, 20132144. |
[40] | Xu ZH (1999) An analysis on the ant fauna of the tropical rain forest in Xishuangbanna of China. Zoological Research, 20, 379-384. (in Chinese with English abstract) |
[徐正会 (1999) 西双版纳热带雨林蚁科昆虫区系分析. 动物学研究, 20, 379-384.] | |
[41] | Zhang NN, Chen YQ, Lu ZX, Zhang W, Li KL (2013) Species diversity, community structure difference and indicator species of leaf-litter ants in rubber plantations and secondary natural forests in Yunnan, southwestern China. Acta Entomologica Sinica, 56, 1314-1323. (in Chinese with English abstract) |
[张念念, 陈又清, 卢志兴, 张威, 李可力 (2013) 云南橡胶林和天然次生林枯落物层蚂蚁物种多样性、群落结构差异及指示种. 昆虫学报, 56, 1314-1323.] |
[1] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[2] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[3] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[4] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[5] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[6] | 刘彩莲, 许庆, 王林龙, 邢衍阔, 宋稼豪, 林柏岸, 康斌, 刘敏. 闽东近海春秋季游泳动物多样性、密度及群落特征[J]. 生物多样性, 2023, 31(7): 22635-. |
[7] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[8] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[9] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[10] | 张鹤露, 赵美红, 孙世春, 刘晓收. 西藏那曲市高原盐湖自由生活线虫群落多样性与结构特征[J]. 生物多样性, 2023, 31(5): 22533-. |
[11] | 魏庐潞, 徐婷婷, 李媛媛, 艾喆, 马飞. 同质园环境和遗传分化影响锦鸡儿属植物根际土壤固氮菌多样性和群落结构[J]. 生物多样性, 2023, 31(4): 22477-. |
[12] | 林魏巍, 田呈明, 熊典广, 刘伟航, 热依汗古丽·斯地克, 梁英梅. 新疆杨树人工林中蜘蛛群落多样性及其影响因素[J]. 生物多样性, 2023, 31(3): 22493-. |
[13] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[14] | 张伟, 翟东东, 熊飞, 刘红艳, 陈元元, 王莹, 廖传松, 段辛斌, 田辉伍, 邓华堂, 陈大庆. 三峡库区鱼类群落结构和功能多样性[J]. 生物多样性, 2023, 31(2): 22136-. |
[15] | 杨清, 张鹏, 安瑞志, 乔楠茜, 达珍, 巴桑. 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J]. 生物多样性, 2022, 30(6): 22012-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn