生物多样性 ›› 2022, Vol. 30 ›› Issue (5): 21480. DOI: 10.17520/biods.2021480
所属专题: 物种形成与系统进化
肖钰1,2, 王茜1,2, 何梓晗1,2, 李玲玲1,2, 胡新生1,2,*()
收稿日期:
2021-11-25
接受日期:
2022-03-01
出版日期:
2022-05-20
发布日期:
2022-03-09
通讯作者:
胡新生
作者简介:
* E-mail: xinsheng@scau.edu.cn基金资助:
Yu Xiao1,2, Xi Wang1,2, Zihan He1,2, Lingling Li1,2, Xinsheng Hu1,2,*()
Received:
2021-11-25
Accepted:
2022-03-01
Online:
2022-05-20
Published:
2022-03-09
Contact:
Xinsheng Hu
摘要:
物种形成是进化生物学研究的一个永恒主题, 由于生物群体进化是连续和动态的, 物种界限变得难于界定。本文首先讨论了3种地理物种形成模式(同域、邻域及异域), 并分析了近期报道的研究证据。其次, 评述了合子后生殖隔离机制的分子遗传基础和应用群体基因组数据分析的证据, 包括BDMI模型(Bateson-Dobzhansky-Muller incompatibility)、QTLs (quantitative trait loci)、霍尔丹法则及大X染色体效应。最后, 探讨了交配系统作为合子前隔离机制之一与物种形成的关系, 认为近交或自交通过扩大种群遗传结构分化, 增强不同交配系统的种群间不对称基因渐渗, 或种群间无基因渐渗等途径, 促进新物种形成。已知植物交配系统的演化更倾向于从异交(或自交不亲和)向自交(或近交亲和)方式, 花性状和基因组的分化推动形成所谓的自交综合征, 研究交配系统驱动或强化物种形成模式对认识植物物种形成机制有重要意义。
肖钰, 王茜, 何梓晗, 李玲玲, 胡新生 (2022) 基于生物学物种定义探讨物种形成理论与验证的研究进展. 生物多样性, 30, 21480. DOI: 10.17520/biods.2021480.
Yu Xiao, Xi Wang, Zihan He, Lingling Li, Xinsheng Hu (2022) Advances in speciation theories and their verifications based on the biological species concept. Biodiversity Science, 30, 21480. DOI: 10.17520/biods.2021480.
图1 同域物种形成: 祖先群体经过歧化选择或性选择产生生殖隔离的后代
Fig. 1 Sympatric speciation: an ancestral population undergoes disruptive selection or sexual selection to produce reproductively isolated descendant species
图2 邻域物种形成: 两物种交界处呈现杂交带。基因频率随地理距离而呈梯度变异。
Fig. 2 Parapatric speciation: A hybrid zone occurs in the boundaries between two species. The gene frequency changes in a clinal pattern with the geographic distance.
图3 异域物种形成: 两群体因地理隔离而独立进化, 形成生殖隔离, 无基因流。
Fig. 3 Allopatric speciation: The two populations evolve independently due to geographical isolation (without gene flow) and eventually produce reproductive isolation.
假设 Assumption | 理论 Theory | 参考文献 Reference |
---|---|---|
显性理论 Dominance | X染色体含有显性和隐性等位基因, 隐性基因在XY个体上暴露, 产生不育或不成活, 在XX个体中被显性基因掩盖。 The X chromosome has both dominant and recessive alleles. The recessive genes are exposed in XY individuals to produce sterility or infertility but are masked by dominant genes in XX individuals. | Muller, |
Faster-male | 由于精子发生在杂交种中容易受到干扰, 性选择可能使雄性表达的基因比雌性进化得更快, 导致杂交雄性不育比杂交雌性不育更常见。 Spermatogenesis is susceptible to interference in hybrids. Sexual selection could make the genes expressed in males evolve more rapidly than the genes expressed in females. This results in that the hybrid male sterility is more common than the hybrid female sterility. | Wu & Davis, |
Faster-X | 与常染色体相比, X染色体突变率更大, Ka/Ks比值较大。 X chromosome has a greater mutation rate and a larger Ka/Ks ratio than the autosomes. | Charlesworth et al, |
减数分裂驱动 Meiotic drive | 性染色体在减数分裂时因自私基因干扰, 偏离孟德尔遗传期望比例。 Sex chromosomes deviate from the expected Mendelian ratio during meiosis due to the interference by selfish genes. | Frank, |
表1 霍尔丹法则形成的相关理论
Table 1 Theories relevant to Haldane’s Rule
假设 Assumption | 理论 Theory | 参考文献 Reference |
---|---|---|
显性理论 Dominance | X染色体含有显性和隐性等位基因, 隐性基因在XY个体上暴露, 产生不育或不成活, 在XX个体中被显性基因掩盖。 The X chromosome has both dominant and recessive alleles. The recessive genes are exposed in XY individuals to produce sterility or infertility but are masked by dominant genes in XX individuals. | Muller, |
Faster-male | 由于精子发生在杂交种中容易受到干扰, 性选择可能使雄性表达的基因比雌性进化得更快, 导致杂交雄性不育比杂交雌性不育更常见。 Spermatogenesis is susceptible to interference in hybrids. Sexual selection could make the genes expressed in males evolve more rapidly than the genes expressed in females. This results in that the hybrid male sterility is more common than the hybrid female sterility. | Wu & Davis, |
Faster-X | 与常染色体相比, X染色体突变率更大, Ka/Ks比值较大。 X chromosome has a greater mutation rate and a larger Ka/Ks ratio than the autosomes. | Charlesworth et al, |
减数分裂驱动 Meiotic drive | 性染色体在减数分裂时因自私基因干扰, 偏离孟德尔遗传期望比例。 Sex chromosomes deviate from the expected Mendelian ratio during meiosis due to the interference by selfish genes. | Frank, |
[1] |
Baker HG (1967) Support for Baker’s law―As a rule. Evolution, 21, 853-856.
DOI URL |
[2] |
Baniaga AE, Marx HE, Arrigo N, Barker MS (2020) Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecology Letters, 23, 68-78.
DOI URL |
[3] |
Bank C, Bürger R, Hermisson J (2012) The limits to parapatric speciation: Dobzhansky-Muller incompatibilities in a continent-island model. Genetics, 191, 845-863.
DOI URL |
[4] |
Barnard-Kubow KB, McCoy MA, Galloway LF (2017) Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. New Phytologist, 213, 1466-1476.
DOI PMID |
[5] | Barreto FS (2003) Assotative Mating as a Barrier to Gene Flow in a Coral Reef Fish Species Flock. MSc Thesis, University of North Carolina, Wilmington. |
[6] |
Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. American Journal of Botany, 94, 1527-1533.
DOI PMID |
[7] | Barton NH, Briggs DE, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, New York. |
[8] |
Barton NH, Charlesworth B (1984) Genetic revolution, founder effects, and speciation. Annual Review of Ecology and Systematics, 15,133-164.
DOI URL |
[9] | Bateson W (1909) Heredity and Variation in Modern Lights. Cambridge University Press, Cambridge. |
[10] |
Berdan EL, Fuller RC, Kozak GM (2021) Genomic landscape of reproductive isolation in Lucania killifish: The role of sex loci and salinity. Journal of Evolutionary Biology, 34, 157- 174.
DOI PMID |
[11] | Bock WJ (1986) Species concepts, speciation and macroevolution. In: Modern Aspects of Species (eds Lwatsuki K, Raven PK, Bock WJ), pp. 31-57. University of Tokyo Press, Tokyo. |
[12] |
Bock WJ (2004) Species: The concept, category and taxon. Journal of Zoological Systematics and Evolutionary Research, 42, 178-190.
DOI URL |
[13] |
Bogdanova VS, Kosterin OE, Yadrikhinskiy AK (2014) Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus. Theoretical and Applied Genetics, 127, 1163-1172.
DOI PMID |
[14] |
Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: Reseeding potential varies among coral species. Science Advances, 3, e1602373.
DOI URL |
[15] |
Buide ML, del Valle JC, Pissatto M, Narbona E (2015) Night life on the beach: Selfing to avoid pollinator competition between two sympatric Silene species. Annals of Botany, 116, 201-211.
DOI URL |
[16] | Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: The most important way to classify speciation? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 2997-3007. |
[17] |
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD (2020) Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecology and Evolution, 11, 89-107.
DOI URL |
[18] |
Caballero A, Hill WG (1992) Effective size of nonrandom mating populations. Genetics, 130, 909-916.
DOI PMID |
[19] |
Carleton KL, Escobar-Camacho D, Kocher TD (2019) Visual adaptation could aid sympatric speciation in a deep crater lake. Molecular Ecology, 28, 5007-5009.
DOI PMID |
[20] |
Castillo DM, Gibson AK, Moyle LC (2016) Assortative mating and self-fertilization differ in their contributions to reinforcement, cascade speciation, and diversification. Current Zoology, 62, 169-181.
DOI PMID |
[21] |
Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex chromosomes and autosomes. The American Naturalist, 130, 113-146.
DOI URL |
[22] | Charlesworth D (2006) Evolution of plant breeding systems. Current Biology, 16, R726-R735. |
[23] |
Cheng X, Li LL, Xiao Y, Chen XY, Hu XS (2020) Advances in the methods of detecting interspecific gene introgression and their applications. Scientia Sinica Vitae, 50, 1388-1404. (in Chinese with English abstract)
DOI URL |
[程祥, 李玲玲, 肖钰, 陈晓阳, 胡新生 (2020) 种间基因渐渗检测方法及其应用研究进展. 中国科学: 生命科学, 50, 1388-1404.] | |
[24] | Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Inc. Sunderland, MA. |
[25] | Cracraft J (1983) Species concepts and speciation analysis. Current Ornithology, 1, 159-187. |
[26] | Crawford DJ, Moura M, Borges Silva L, Mort ME, Kerbs B, Schaefer H, Kelly JK (2019) The transition to selfing in Azorean Tolpis (Asteraceae). Plant Systematics and Evolution, 305, 305-317. |
[27] |
Crespi B, Nosil P (2013) Conflictual speciation: Species formation via genomic conflict. Trends in Ecology & Evolution, 28, 48-57.
DOI URL |
[28] |
Cutter AD (2019) Reproductive transitions in plants and animals: Selfing syndrome, sexual selection and speciation. New Phytologist, 224, 1080-1094.
DOI PMID |
[29] |
Deitz KC, Takken W, Slotman MA (2020) The genetic architecture of post-zygotic reproductive isolation between Anopheles coluzzii and A. quadriannulatus. Frontiers in Genetics, 11, 925.
DOI URL |
[30] | Dobzhansky T (1937) Genetics and the Origin of Species. Columbia University Press, New York. |
[31] |
Dong F, Li SH, Chiu CC, Dong L, Yao CT, Yang XJ (2020) Strict allopatric speciation of sky island Pyrrhula erythaca species complex. Molecular Phylogenetics and Evolution, 153, 106941.
DOI URL |
[32] |
Esfeld K, Berardi AE, Moser M, Bossolini E, Freitas L, Kuhlemeier C (2018) Pseudogenization and resurrection of a speciation gene. Current Biology, 28, 3776-3786.
DOI |
[33] |
Feliner GN, Álvarez I, Fuertes-Aguilar J, Heuertz M, Marques I, Moharrek F, Piñeiro R, Riina R, Rosselló JA, Soltis PS, Villa-Machío I (2017) Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity, 118, 513-516.
DOI PMID |
[34] |
Fernández-Meirama M, Carvajal-Rodríguez A, Rolán-Alvarez E (2017) Testing the role of mating preference in a case of incomplete ecological speciation with gene flow. Biological Journal of the Linnean Society, 122, 549-557.
DOI URL |
[35] |
Foote AD (2018) Sympatric speciation in the genomic era. Trends in Ecology & Evolution, 33, 85-95.
DOI URL |
[36] | Fornoni J, Ordano M, Pérez-Ishiwara R, Boege K, Domínguez CA (2015) A comparison of floral integration between selfing and outcrossing species: A meta-analysis. Annals of Botany, 117, 299-306. |
[37] | Frank SA (1991) Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution, 45, 262. |
[38] | Freeland JR, Kirk H, Petersen S (2011) Molecular Ecology. John Wiley & Sons, Chichester. |
[39] |
Futuyma DJ, Mayer GC (1980) Non-allopatric speciation in animals. Systematic Biology, 29, 254-271.
DOI URL |
[40] |
Gao YD, Gao XF, Harris A (2019) Species boundaries and parapatric speciation in the complex of alpine shrubs, Rosa sericea (Rosaceae), based on population genetics and ecological tolerances. Frontiers in Plant Science, 10, 321.
DOI URL |
[41] | Gavrilets S (2000) Waiting time to parapatric speciation. Proceedings of the Royal Society B: Biological Sciences, 267, 2483-2492. |
[42] |
Gavrilets S (2003) Models of speciation: What have we learned in 40 years? Evolution, 57, 2197-2215.
PMID |
[43] | Geber MA, Dawson TE, Delph LF (1999) Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin. |
[44] |
Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary Enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36, 47-79.
DOI URL |
[45] |
Haffer J (1969) Speciation in amazonian forest birds. Science, 165, 131-137.
PMID |
[46] |
Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101-109.
DOI URL |
[47] |
Hänniger S, Dumas P, Schöfl G, Gebauer-Jung S, Vogel H, Unbehend M, Heckel DG, Groot AT (2017) Genetic basis of allochronic differentiation in the fall armyworm. BMC Evolutionary Biology, 17, 68.
DOI PMID |
[48] |
Hong DY (2020) Gen-morph species concept—A new and integrative species concept for outbreeding organisms. Journal of Systematics and Evolution, 58, 725-742.
DOI URL |
[49] |
Höllinger I, Hermisson J (2017) Bounds to parapatric speciation: A Dobzhansky-Muller incompatibility model involving autosomes, X chromosomes, and mitochondria. Evolution, 71, 1366-1380.
DOI PMID |
[50] |
Hu WZ, Zhao JM, Zhang YW (2019) Fitness advantage and maintenance mechanisms of dimorphic mixed mating plants. Biodiversity Science, 27, 468-474. (in Chinese with English abstract)
DOI URL |
[胡文昭, 赵骥民, 张彦文 (2019) 二态混合交配系统的适合度优势及其维持机制研究进展. 生物多样性, 27, 468-474.]
DOI |
|
[51] |
Hu XS (2005) Tension versus ecological zones in a two-locus system. Theoretical Population Biology, 68, 119-131.
DOI URL |
[52] |
Hu XS (2011) Mating system and the critical migration rate for swamping selection. Genetics Research, 93, 233-254.
DOI URL |
[53] |
Hu XS (2015) Mating system as a barrier to gene flow. Evolution, 69, 1158-1177.
DOI URL |
[54] |
Hu XS, Filatov DA (2016) The large-X effect in plants: Increased species divergence and reduced gene flow on the Silene X-chromosome. Molecular Ecology, 25, 2609-2619.
DOI URL |
[55] |
Hu XS, Zhang XX, Zhou W, Hu Y, Wang X, Chen XY (2019) Mating system shifts a species’ range. Evolution, 73, 158-174.
DOI URL |
[56] |
Hurst LD, Pomiankowski A (1991) Causes of sex ratio bias may account for unisexual sterility in hybrids: A new explanation of Haldane’s Rule and related phenomena. Genetics, 128, 841-858.
DOI PMID |
[57] | Jewell CP, Zhang SV, Gibson MJS, Tovar-Méndez A, McClure B, Moyle LC (2020) Intraspecific genetic variation underlying postmating reproductive barriers between species in the wild tomato clade (Solanum sect. Lycopersicon). Journal of Heredity, 111, 216-226. |
[58] |
Jordan CY, Ally D, Hodgins KA (2015) When can stress facilitate divergence by altering time to flowering? Ecology and Evolution, 5, 5962-5973.
DOI URL |
[59] |
Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A (2020) Contrasting signatures of genomic divergence during sympatric speciation. Nature, 588, 106-111.
DOI URL |
[60] |
Knowles LL (2000) Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution, 54, 1337-1348.
PMID |
[61] | Kohlmann B, Arriaga-Jiménez A, Rös M (2018) Dung beetle vicariant speciation in the mountains of Oaxaca, Mexico, with a description of a new species of Phanaeus (Coleoptera, Geotrupidae, Scarabaeidae). ZooKeys, (743), 67-93. |
[62] |
Li LL, Wang X, Xiao Y, Cheng X, Chen XY, Hu XS (2021) On the theories of plant mating system and molecular evolution and their applications. Scientia Sinica Vitae, 51, doi: 10.1360/SSV-2021-0106. (in Chinese with English abstract)
DOI |
[李玲玲, 王茜, 肖钰, 程祥, 陈晓阳, 胡新生 (2021) 植物交配系统与分子进化理论及其应用研究. 中国科学: 生命科学, 51, doi: 10.1360/SSV-2021-0106.]
DOI |
|
[63] |
Liao Q, Du R, Gou J, Guo L, Shen H, Liu H, Nguyen JK, Ming R, Yin T, Huang S, Yan J (2020) The genomic architecture of the sex-determining region and sex-related metabolic variation in Ginkgo biloba. The Plant Journal, 104, 1399- 1409.
DOI URL |
[64] |
Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, Manser A, Montchamp-Moreau C, Petrosyan VG, Pomiankowski A, Presgraves DC, Safronova LD, Sutter A, Unckless RL, Verspoor RL, Wedell N, Wilkinson GS, Price TAR (2016) The ecology and evolutionary dynamics of meiotic drive. Trends in Ecology & Evolution, 31, 315-326.
DOI URL |
[65] |
Llopart A, Brud E, Pettie N, Comeron JM (2018) Support for the dominance theory in Drosophila transcriptomes. Genetics, 210, 703-718.
DOI PMID |
[66] |
Lu Y, Hokin SA, Kermicle JL, Hartwig T, Evans MMS (2019) A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays. Nature Communications, 10, 2304.
DOI URL |
[67] | Mayr E (1942) Systematics and the Origin of Species. Columbia University Press, New York. |
[68] |
Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annual Review of Plant Biology, 62, 485- 514.
DOI PMID |
[69] |
Moison M, Roux F, Quadrado M, Duval R, Ekovich M, Lê DH, Verzaux M, Budar F (2010) Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana. The Plant Journal, 63, 728-738.
DOI URL |
[70] |
Moran PA, Pascoal S, Cezard T, Risse JE, Ritchie MG, Bailey NW (2018) Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes. Molecular Ecology, 27, 3905-3924.
DOI URL |
[71] | Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biology Symposium, 6, 71-125. |
[72] |
Nieto-Lugilde M, Werner O, McDaniel SF, Koutecký P, Kčera J, Rizk SM, Ros RM (2018) Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus Ceratodon. American Journal of Botany, 105, 1009-1020.
DOI PMID |
[73] |
Nuckolls NL, Núñez MAB, Eickbush MT, Young JM, Lange JJ, Yu JS, Smith GR, Jaspersen SL, Malik HS, Zanders SE (2017) wtf genes are prolific dual poison-antidote meiotic drivers. eLife, 6, e26033.
DOI URL |
[74] |
Orr HA, Orr LH (1996) Waiting for speciation: The effect of population subdivision on the time to speciation. Evolution, 50, 1742.
DOI URL |
[75] | Orr HA, Turelli M (2001) The evolution of postzygotic isolation: Accumulating Dobzhansky-Muller incompatibilities. ACS Applied Materials & Interfaces, 55, 1085-1094. |
[76] | Osborne OG, Kafle T, Brewer T, Dobreva MP, Hutton I, Savolainen V (2020) Sympatric speciation in mountain roses (Metrosideros) on an oceanic island. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 375, 20190542. |
[77] |
Ostevik KL, Rifkin JL, Xia HH, Rausher MD (2020) Morning glory species co-occurrence is associated with asymmetrically decreased and cascading reproductive isolation. Evolution Letters, 5, 75-85.
DOI URL |
[78] |
Palma-Silva C, Cozzolino S, Paggi GM, Lexer C, Wendt T (2015) Mating system variation and assortative mating of sympatric bromeliads (Pitcairnia spp.) endemic to neotropical inselbergs. American Journal of Botany, 102, 758-764.
DOI PMID |
[79] |
Pickup M, Brandvain Y, Fraïsse C, Yakimowski S, Barton NH, Dixit T, Lexer C, Cereghetti E, Field DL (2019) Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist, 224, 1035-1047.
DOI URL |
[80] | Pirani RM, Peloso PLV, Prado JR, Polo ÉM, Knowles LL, Ron SR, Rodrigues MT, Sturaro MJ, Werneck FP (2020) Diversification history of clown tree frogs in Neotropical rainforests (Anura, Hylidae, Dendropsophus leucophyllatus group). Molecular Phylogenetics and Evolution, 150, 106877. |
[81] |
Postel Z, Touzet P (2020) Cytonuclear genetic incompatibilities in plant speciation. Plants, 9, 487.
DOI URL |
[82] |
Presgraves DC (2010) The molecular evolutionary basis of species formation. Nature Reviews Genetics, 11, 175-180.
DOI PMID |
[83] |
Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452.
DOI URL |
[84] |
Rausher MD (2017) Selfing, local mate competition, and reinforcement. The American Naturalist, 189, 87-104.
DOI PMID |
[85] |
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM (2017) Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow. Journal of Evolutionary Biology, 30, 1450-1477.
DOI PMID |
[86] |
Rettelbach A, Servedio MR, Hermisson J (2016) Speciation in peripheral populations: Effects of drift load and mating systems. Journal of Evolutionary Biology, 29, 1073-1090.
DOI PMID |
[87] | Richards EJ, Servedio MR, Martin CH (2019) Searching for sympatric speciation in the genomic era. BioEssays, 41, e1900047. |
[88] | Roos C, Helgen KM, Miguez RP, Thant NML, Lwin N, Lin AK, Lin A, Yi KM, Soe P, Hein ZM, Myint MNN, Ahmed T, Chetry D, Urh M, Veatch EG, Duncan N, Kamminga P, Chua MAH, Yao L, Matauschek C, Meyer D, Liu ZJ, Li M, Nadler T, Fan PF, Quyet LK, Hofreiter M, Zinner D, Momberg F (2020) Mitogenomic phylogeny of the Asian colobine genus Trachypithecus with special focus on Trachypithecus phayrei (Blyth, 1847) and description of a new species. Zoological Research, 41, 656-669. |
[89] |
Rundle HD, Nosil P (2005) Ecological speciation. Ecology Letters, 8, 336-352.
DOI URL |
[90] |
Sambatti JBM, Ortiz-Barrientos D, Baack EJ, Rieseberg LH (2008) Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers. Ecology Letters, 11, 1082-1091.
DOI URL |
[91] |
Schliewen UK, Klee B (2004) Reticulate sympatric speciation in Cameroonian crater lake cichlids. Frontiers in Zoology, 1, 5.
PMID |
[92] |
Schluter D (2009) Evidence for ecological speciation and its alternative. Science, 323, 737-741.
DOI PMID |
[93] |
Schumer M, Rosenthal GG, Andolfatto P (2018) What do we mean when we talk about hybrid speciation?. Heredity, 120, 379-382.
DOI PMID |
[94] |
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brännström A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Möst M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A (2014) Genomics and the origin of species. Nature Reviews Genetics, 15, 176-192.
DOI PMID |
[95] |
Seifert B (2020) The gene and gene expression (GAGE) species concept: An universal approach for all eukaryotic organisms. Systematic Biology, 69, 1033-1038.
DOI URL |
[96] |
Shen R, Wang L, Liu X, Wu J, Jin W, Zhao X, Xie X, Zhu Q, Tang H, Li Q, Chen L, Liu YG (2017) Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nature Communications, 8, 1310.
DOI URL |
[97] |
Sheu Y, Zurano JP, Ribeiro MA, Avila-Pires TC, Rodrigues MT, Colli GR, Werneck FP (2020) The combined role of dispersal and niche evolution in the diversification of Neotropical lizards. Ecology and Evolution, 10, 2608-2625.
DOI URL |
[98] |
Shimizu KK, Tsuchimatsu T (2015) Evolution of selfing: Recurrent patterns in molecular adaptation. Annual Review of Ecology, Evolution, and Systematics, 46, 593-622.
DOI URL |
[99] |
Skeels A, Cardillo M (2019) Reconstructing the geography of speciation from contemporary biodiversity data. The American Naturalist, 193, 240-255.
DOI URL |
[100] |
Slatkin M (1982) Pleiotropy and parapatric speciation. Evolution, 36, 263.
DOI URL |
[101] |
Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science, 236, 787-792.
PMID |
[102] | Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC (2018) Cytonuclear integration and co-evolution. Nature Reviews Genetics, 19, 635-648. |
[103] |
Sutherland BL, Galloway LF (2021) Variation in heteroploid reproduction and gene flow across a polyploid complex: One size does not fit all. Ecology and Evolution, 11, 9676-9788.
DOI PMID |
[104] |
Sweigart AL, Brandvain Y, Fishman L (2019) Making a murderer: The evolutionary framing of hybrid gamete-killers. Trends in Genetics, 35, 245-252.
DOI PMID |
[105] |
Takagui FH, Baumgärtner L, Baldissera JN, Laridondo Lui R, Margarido VP, Fonteles SBA, Garcia C, Birindelli JO, Moreira-Filho O, Almeida FS, Giuliano-Caetano L (2019) Chromosomal diversity of thorny catfishes (SiluriformesDoradidae): A case of allopatric speciation among Wertheimerinae species of São Francisco and Brazilian eastern coastal drainages. Zebrafish, 16, 477-485.
DOI URL |
[106] | Thompson KA (2020) Experimental hybridization studies suggest that pleiotropic alleles commonly underlie adaptive divergence between natural populations. The American Naturalist, 196, E16-E22. |
[107] |
Titus BM, Blischak PD, Daly M (2019) Genomic signatures of sympatric speciation with historical and contemporary gene flow in a tropical anthozoan (Hexacorallia: Actiniaria). Molecular Ecology, 28, 3572-3586.
DOI URL |
[108] |
Udovic D (1980) Frequency-dependent selection, disruptive selection, and the evolution of reproductive isolation. The American Naturalist, 116, 621-641.
DOI URL |
[109] |
van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution, 27, 353-361.
DOI URL |
[110] |
Wainwright BJ, Arlyza IS, Karl SA (2020) Population genetics of the banded coral shrimp, Stenopus hispidus (Olivier, 1811), in the Indonesian Archipelago. Journal of Experimental Marine Biology and Ecology, 525, 151325.
DOI URL |
[111] | Wang HW, Yin HY, Jiao CZ, Fang XJ, Wang GP, Li GR, Ni F, Li PH, Su PS, Ge WY, Lyu ZF, Xu SS, Yang YH, Hao YC, Cheng XX, Zhao JX, Liu C, Xu FF, Ma X, Sun SL, Zhao Y, Bao YG, Liu C, Zhang JJ, Pavlicek T, Li AF, Yang ZJ, Nevo E, Kong LR (2020) Sympatric speciation of wild emmer wheat driven by ecology and chromosomal rearrangements. Proceedings of the National Academy of Sciences, USA, 117, 5955-5963. |
[112] |
Wang X, Cheng X, Zhou W, Zhang XX, Hu Y, Chen XY, Hu XS (2019) Assessing the ecological and evolutionary processes underlying cytonuclear interactions. Scientia Sinica Vitae, 49, 951-964. (in Chinese with English abstract)
DOI URL |
[王茜, 程祥, 周玮, 张新新, 胡颖, 陈晓阳, 胡新生 (2019) 细胞核质互作形成的生态与进化过程分析. 中国科学: 生命科学, 49, 951-964.] | |
[113] |
Wang YH, Comes HP, Cao YN, Guo R, Mao YR, Qiu YX (2017) Quaternary climate change drives allo-peripatric speciation and refugial divergence in the Dysosma versipellis-pleiantha complex from different forest types in China. Scientific Reports, 7, 40261.
DOI URL |
[114] |
Wang ZF, Jiang YZ, Bi H, Lu ZQ, Ma YZ, Yang XY, Chen NN, Tian B, Liu BB, Mao XX, Ma T, DiFazio SP, Hu QJ, Abbott RJ, Liu JQ (2021) Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Molecular Plant, 14, 208-222.
DOI URL |
[115] | Wright S (1969) Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago. |
[116] | Wright S (1977) Evolution and the Genetics of Populations. Vol.3. Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago. |
[117] | Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society B: Biological Sciences, 280, 20130133. |
[118] |
Wu CI (2001) The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865.
DOI URL |
[119] |
Wu CI, Davis AW (1993) Evolution of postmating reproductive isolation: The composite nature of Haldane’s rule and its genetic bases. The American Naturalist, 142, 187-212.
DOI URL |
[120] |
Yarahmadov T, Robinson S, Hanemian M, Pulver V, Kuhlemeier C (2020) Identification of transcription factors controlling floral morphology in wild Petunia species with contrasting pollination syndromes. The Plant Journal, 104, 289-301.
DOI URL |
[121] |
Zachos FE (2018) Species concepts, species delimitation and the inherent limitations of taxonomy. Journal of Genetics, 97, 811-815.
PMID |
[122] |
Zhang LB, Sun TA, Woldesellassie F, Xiao HL, Tao Y (2015) Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility. PLoS Genetics, 11, e1005073.
DOI URL |
[123] |
Zhang XX, Wang X, Hu Y, Zhou W, Chen XY, Hu XS (2019) Advances in the study of population genetic diversity at plant species’ margins. Chinese Journal of Plant Ecology, 43, 383-395. (in Chinese with English abstract)
DOI URL |
[张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生 (2019) 植物边缘种群遗传多样性研究进展. 植物生态学报, 43, 383-395.]
DOI |
|
[124] |
Zhong L, Barrett SCH, Wang XJ, Wu ZK, Sun HY, Li DZ, Wang H, Zhou W (2019) Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants. New Phytologist, 224, 1290-1303.
DOI PMID |
[1] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[2] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[3] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[4] | 胡正艳, 郑全晶, 母其勇, 杜志强, 刘琳, 星耀武, 韩廷申. 不同纬度高蔊菜的交配系统和繁殖保障[J]. 生物多样性, 2021, 29(6): 712-721. |
[5] | 李敏岚, 王超, 王瑞武. 路径依赖下的物种形成机制[J]. 生物多样性, 2021, 29(3): 409-418. |
[6] | 范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞. 红砂基因组大小变异及物种分化[J]. 生物多样性, 2021, 29(10): 1308-1320. |
[7] | 胡文昭,赵骥民,张彦文. 二态混合交配系统的适合度优势及其维持机制研究进展[J]. 生物多样性, 2019, 27(4): 468-474. |
[8] | 胡颖, 王茜, 张新新, 周玮, 陈晓阳, 胡新生. 叶绿体DNA标记在谱系地理学中的应用研究进展[J]. 生物多样性, 2019, 27(2): 219-234. |
[9] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[10] | 李霖锋, 刘宝. 表观遗传变异在植物杂交与多倍化过程中的作用[J]. 生物多样性, 2017, 25(6): 600-607. |
[11] | 王玉国. 自然杂交与物种形成[J]. 生物多样性, 2017, 25(6): 565-576. |
[12] | 邱英雄, 鹿启祥, 张永华, 曹亚男. 东亚第三纪孑遗植物的亲缘地理学: 现状与趋势[J]. 生物多样性, 2017, 25(2): 136-146. |
[13] | 洪德元. 生物多样性事业需要科学、可操作的物种概念[J]. 生物多样性, 2016, 24(9): 979-999. |
[14] | 刘建全. “整合物种概念”和“分化路上的物种”[J]. 生物多样性, 2016, 24(9): 1004-1008. |
[15] | 张德兴. 为什么在物种概念上难以达成共识?[J]. 生物多样性, 2016, 24(9): 1009-1013. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn