生物多样性 ›› 2021, Vol. 29 ›› Issue (3): 409-418. DOI: 10.17520/biods.2020276
• 论坛 • 上一篇
收稿日期:
2020-07-11
接受日期:
2021-01-04
出版日期:
2021-03-20
发布日期:
2021-01-13
通讯作者:
王超,王瑞武
作者简介:
wangrw@nwpu.edu.cn#共同第一作者
基金资助:
Minlan Li1,2, Chao Wang1,*(), Ruiwu Wang1,*(
)
Received:
2020-07-11
Accepted:
2021-01-04
Online:
2021-03-20
Published:
2021-01-13
Contact:
Chao Wang,Ruiwu Wang
About author:
First author contact:#Co-first authors
摘要:
生物科学几乎所有研究都需要物种概念作为基础, 生物多样性研究亦需要可操作的物种概念, 但现有物种概念存在不同程度的人为因素或难操作性, 对物种划分造成不利影响。本文引入“进化路径”这一概念, 说明适合度景观时刻变化着, 物种在每个进化时间点上依据瞬时适合度选择下一时刻的进化状态, 且总是沿着动态适合度景观中适合度增加的方向进化。基于演化博弈的方法, 以随机过程为例模拟物种的进化过程。进而提出路径依赖下的物种形成机制, 并在此基础上给出可操作的物种定义, 即: 针对基因、性状、生态过程等任一状态下两个群体内个体的多个变量做统计分析, 若群体之间同时在两个或多个维度状态下呈现出的不连续性d大于群体内变量呈现出的差异性σk, 则拥有相应变量的个体属于不同物种。
李敏岚, 王超, 王瑞武 (2021) 路径依赖下的物种形成机制. 生物多样性, 29, 409-418. DOI: 10.17520/biods.2020276.
Minlan Li, Chao Wang, Ruiwu Wang (2021) Path-dependent speciation in the process of evolution. Biodiversity Science, 29, 409-418. DOI: 10.17520/biods.2020276.
图1 表型的适合度景观图。实线表示真实的适合度景观, 当生物体在这样有高峰有山谷的适合度景观上进化时, 很容易被困在某一更低的局部峰值上。虚线是在Frank提出的反应规范作用下的表型适合度景观, 即由某基因控制的表型的适合度景观, 该景观只有一个单峰, 使得表型更容易进化到适合度更高的表型。
Fig. 1 Fitness landscape of phenotypes. The solid line shows the fitness landscape observed. When an organism evolves on such a multipeak fitness landscape, it’s easy to be trapped at a lower local peak. The dashed line displays the phenotypic fitness landscape smoothed by reaction norm, i.e., the expect fitness for a genotype with a certain average phenotype. This fitness landscape just has one single peak, which makes it easier for any phenotype to evolve to another one with higher fitness.
图2 群体内表型从x0进化到xn过程的示意图。个体在每一时刻都会根据瞬时适合度以一定概率去选择自己下一时刻期望进化到的表型, 因此群体内的表型从t0到tn的进化过程中可能产生多条路径, a, b即为其中的两条。假设路径a上的表型为${{x}_{0}},{{x}_{1}},{{x}_{2}},...,{{x}_{n}}$, 该路径出现的概率为$P[({{t}_{0}}),{{x}_{1}}({{t}_{1}}),{{x}_{2}}({{t}_{2}}),\ldots,{{x}_{n}}({{t}_{n}})]$。
Fig. 2 An evolutionary process for phenotype in a population from x0 to xn. An individual selects the next phenotype to evolve with a certain probability according to its instantaneous fitness at each time step, thus many possible paths of phenotype in a population occur including paths a and b. Suppose that trajectory a consists of phenotype ${{x}_{0}},{{x}_{1}},{{x}_{2}},...,{{x}_{n}}$, then the possibility is $P[{{x}_{0}}({{t}_{0}}),{{x}_{1}}({{t}_{1}}),{{x}_{2}}({{t}_{2}}),\ldots,{{x}_{n}}({{t}_{n}})]$。
图3 进化路径的分布。不同颜色表示路径的频率。随着时间的演化, 表型从最初的状态分化出其他表型, 在此过程中, 表型只能向相邻的表型进化, 因此进化是连续的。若在t = 1,000这一时刻观察演化结果, 则可以看到明显不连续的物种分化(两个蓝色区域)。
Fig. 3 The distribution of evolutionary paths. Different colors represent different distribution probability of paths. As time goes by, one phenotype differentiates to other phenotypes with different probabilities. The evolutionary path is continuous in this process because that phenotypes can only evolve to adjacent phenotypes. If the evolutionary results are observed at the moment of t = 1,000, significant discontinuous phenotype differentiation (blue regions) can be seen.
图4 路径依赖下的状态进化。(a)状态量随时间演化的频率分布。状态量可以指基因型、性状特征、生态过程。(b) t = 10时的表型频率分布。(c) t = 600时的表型频率分布。若以表型作为状态量, 分化初期显示为单峰的频率分布, 在时间t = 600处时出现明显的分化且显示为双峰的频率分布。这意味着群体内个体从初始的单一表型(50)逐渐分化成两种表型(25和28), 可以进一步判断对应的个体是否为不同物种。
Fig. 4 Path-dependent evolutionary process of states. (a) The frequency distribution curve of states over time. The states represent genotype, phenotype or ecological process. (b) The frequency distribution curve of phenotypes at t = 10, (c) The frequency distribution curve of phenotypes at t = 600. From the perspective of phenotype, the distribution curve changes from unimodal in the early phase to bimodal at t = 600, which means the phenotype differentiates into two phenotypes (25 and 28) at t = 600 from one phenotype (50) in the initial stage. Then we can judge if the species with phenotype 25 and 28 are different species.
图5 不同时刻下表型和基因型的频率分布。(a)表示状态量x1(x2)未分化初期某时刻的频率分布; (b)表示群体内的表型x1在分化之后某时刻的频率分布; (c)表示群体内的基因型x2在分化之后相同时刻的频率分布。假设对于原始物种A, 其任意在两个状态x1和x2随着时间的演化受到基因突变和随机漂变的影响, 在相同或不同时刻出现不同程度的分化。当我们处于物种进化的一个“切面”去观察时, 表型x1分化成x11和x12, 并且进化依赖于特定的路径。若此时分化出的表型和基因型在数量统计上满足一定的条件, 同时在表型和基因型两个状态下同时具有特征x11, x21(x11, x22或x12, x21或x12, x22)的个体为新物种。
Fig. 5 Frequency distribution of phenotypes and genotypes at different time. (a) showing the frequency distribution curve of the state x1(x2) in the early differentiation. (b) demonstrating the frequency distribution curve of the phenotype x1 at a certain moment after differentiation. (c) indicating the frequency distribution curve of the genotype x2 at the same moment after differentiation. Suppose that any two states x1 and x2 of the original species A evolved influenced by random mutation and drift, then different degree of differentiation occurs in the same or different time. When observing in a “cutting plane” of a species evolution, we notice that x1(x2) differentiates into x11(x21) and x12(x22), and the evolution are path-dependent. Meanwhile, if the differentiated phenotypes and the genotypes in a quantity statistics satisfy certain conditions, the individuals with ${{x}_{11}},{{x}_{21}}({{x}_{11}},{{x}_{22}},or{{x}_{12}},{{x}_{21}},or{{x}_{12}},{{x}_{22}})$ are new species, respectively.
图6 随时间演替的物种界定示意图。状态量x1 (x2)在t1(t2)时刻出现分化, 在不同的时间点上根据分化情况判定物种是否属于新物种。
Fig. 6 schematic diagram of the species delimitation over time. The state x1 (x2) differentiates at t1(t2). It can be determined whether a specie at different moments is a new species.
图7 一表型在某一时刻分化出三个独立表型的示意图。该图作为判定表型分化成功的一个特例, 此时种内均值为?1的表型存在连续且程度较低的差异(差异范围是± 0.15), 均值为0的亦然。而这两个种间表型的不连续性达到了1, 其不连续差异程度远高于种内连续差异程度, 因此可以认为该表型达到了形态学物种概念中对于形态的要求。同时考虑原始物种的其他状态上的分化, 若满足同样条件的差异, 即可将相应个体确定为新物种。
Fig. 7 Differentiation of three independent phenotypes from one phenotype of a species at a moment. The figure is a special case of judging whether the phenotypic differentiates completely. There is a continuous and a little difference for the phenotype ?1 within the species (the difference range is ± 0.15), and the phenotype 0 versa. The discontinuity of these two interspecies phenotypes is 1, and the discontinuity is much higher than the intraspecies continuous difference. Therefore, it can be considered that the phenotype meets the requirements for phenotype in the concept of morphological species. Taking into account the differentiation of another state of this species, if the difference satisfies the same conditions, the corresponding individuals can be determined as a new species.
图8 不同的表型分化情形。如果已有一个生物学特征满足定义中的差异性关系, 再考虑性状这一特征。图(a)中, $d=|{{x}_{1}}-{{x}_{2}}|=|(-6)-6|=12,{{\sigma }_{1}}=3,{{\sigma }_{2}}=3.5,d>{{\sigma }_{1}}$且$d>{{\sigma }_{\mathbf{2}}}$, 若有表型分化满足此条件, 则对应个体属于不同物种; 图(b)中, $d=|{{x}_{1}}-{{x}_{2}}|=|(-2)-2|=4,{{\sigma }_{1}}=4,{{\sigma }_{2}}=3.5,d={{\sigma }_{1}}$且$d>{{\sigma }_{\mathbf{2}}}$, 若有表型分化满足此条件, 则对应个体属于同一物种; 图(c)中,$d=|{{x}_{1}}-{{x}_{2}}|=|(-2)-2|=4,{{\sigma }_{1}}=8.1,\ {{\sigma }_{2}}=8.2,$ $d<{{\sigma }_{1}}$且$d<{{\sigma }_{2}}$, 若有表型分化满足此条件, 则对应个体属于同一物种。
Fig. 8 Different case of phenotype differentiation. Imagine the relation of difference has been satisfied for one biological character. Then we consider phenotypes. In figure 8(a), $d=|{{x}_{1}}-{{x}_{2}}|=|(-6)-6|=12,{{\sigma }_{1}}=3,{{\sigma }_{2}}=3.5,d>{{\sigma }_{1}}$ and $d>{{\sigma }_{2}}$. If individuals in two populations satisfy these conditions, they are different species. In figure 8(b), $d=|{{x}_{1}}-{{x}_{2}}|=|(-2)-2|=4,{{\sigma }_{1}}=4,{{\sigma }_{2}}=3.5,d={{\sigma }_{1}}$ and $d>{{\sigma }_{2}}$. If those individuals satisfy these conditions, they are the same species. In figure 8(c), $d=|{{x}_{1}}-{{x}_{2}}|=|(-2)-2|=4,{{\sigma }_{1}}=8.1,{{\sigma }_{2}}=8.2,d<{{\sigma }_{1}}$ and $d<{{\sigma }_{2}}$. If those individuals satisfy these conditions, they are the same species.
[1] |
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. Journal of Evolutionary Biology, 26,229-246.
URL PMID |
[2] | Darwin C (1929) The origin of species by means of natural selection. American Anthropologist, 61,176-177. |
[3] |
Frank SA (2011) Natural selection. II. Developmental variability and evolutionary rate. Journal of Evolutionary Biology, 24,2310-2320.
URL PMID |
[4] | Hedberg O (1958) The taxonomic treatment of vicarious taxa. Uppsala Universitets Arsskrift, 6,186-195. |
[5] | Hong DY (2016) Biodiversity pursuits need a scientific and operative species concept. Biodiversity Science, 24,979-999. (in Chinese with English abstract) |
[ 洪德元 (2016) 生物多样性事业需要科学、可操作的物种概念. 生物多样性, 24,979-999.]. | |
[6] | Li QJ, Li Y (2010) Lamarck redux—A revisit of Darwinism. Journal of Biology, 27(2),55-57. (in Chinese with English abstract) |
[ 李启剑, 李越 (2010) 拉马克的归来: 对达尔文主义的再审视. 生物学杂志, 27(2),55-57.]. | |
[7] | Liu JQ (2016) “The integrative species concept” and “species on the speciation way”. Biodiversity Science, 24,1004-1008. (in Chinese with English abstract) |
[ 刘建全 (2016) “整合物种概念”和“分化路上的物种”. 生物多样性, 24,1004-1008.]. | |
[8] | Lu BR, Wang Z (2016) What is a species: Conflict between evolutionary continuity and taxonomic discontinuity. Chinese Science Bulletin, 61,2663-2669. (in Chinese with English abstract) |
[ 卢宝荣, 王哲 (2016) 什么是物种: 进化连续性与分类间断性冲突的产物. 科学通报, 61,2663-2669.]. | |
[9] | Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge. |
[10] | Traulsen A, Iwasa Y, Nowak MA (2007) The fastest evolutionary trajectory. Journal of Theoretical Biology, 249,617-623. |
[11] | Nowak MA (2006) Evolutionary Dynamics:Exploring the Equations of Life. Harvard University Press, Cambridge. |
[12] | Wang RW (2021) The End of Rationality and Selfness—A Story on the Asymmetry, Uncertainty and Evolution of Cooperation. China Commerce and Trade Press, Beijing. (in Chinese) (in press) |
王瑞武 (2021) 理性与自私的终结——非对称性、不确定性与社会合作行为. 中国商务出版社, 北京. | |
[13] | Wilkins JS (2009) Species: A History of the Idea. University of California Press, Berkeley. |
[14] | Zhou CF, Yang G (2011) Existence and Definition of Species. Science Press, Beijing. (in Chinese) |
周长发, 杨光 (2011) 物种的存在与定义. 科学出版社, 北京. |
[1] | 肖巍峰 左绿荇 杨文涛 李朝奎. 基于地理环境相似度的长江经济带入侵物种虚拟负样本生成方法[J]. 生物多样性, 2023, 31(1): 22094-. |
[2] | 陈敏豪 张超 王嘉栋 湛振杰 陈君帜 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠关系[J]. 生物多样性, 2023, 31(1): 22289-. |
[3] | 吴科毅 阮文达 周棣锋 陈庆春 张承云 潘新园 余上 刘阳 肖荣波. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 22370-. |
[4] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[5] | 江建平, 蔡波, 王斌, 陈蔚涛, 温知新, 张德志. 中国脊椎动物2021年度新增物种报告[J]. 生物多样性, 2022, 30(8): 22225-. |
[6] | 徐文轩, 徐峰, 马伟, 汪沐阳, 王建成, 杨维康. 基于层次分析法的旗舰物种遴选方法[J]. 生物多样性, 2022, 30(8): 21536-. |
[7] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[8] | 郭淳鹏, 钟茂君, 汪晓意, 杨胜男, 唐科, 贾乐乐, 张春兰, 胡军华. 福建省两栖、爬行动物更新名录[J]. 生物多样性, 2022, 30(8): 22090-. |
[9] | 王科, 蔡磊. 世界菌物新命名发表概况(2021年)[J]. 生物多样性, 2022, 30(8): 22277-. |
[10] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
[11] | 席辉辉, 王祎晴, 潘跃芝, 许恬, 湛青青, 刘健, 冯秀彦, 龚洵. 中国苏铁属植物资源和保护[J]. 生物多样性, 2022, 30(7): 21495-. |
[12] | 符龙飞, 韦毅刚. 中国喀斯特洞穴维管植物多样性[J]. 生物多样性, 2022, 30(7): 21537-. |
[13] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[14] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
[15] | 姬云瑞, 韦雪蕾, 张国锋, 向明贵, 王永超, 龚仁琥, 胡杨, 李迪强, 刘芳. 湖北五峰后河国家级自然保护区鸟类多样性[J]. 生物多样性, 2022, 30(7): 21475-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn