Biodiversity Science ›› 2019, Vol. 27 ›› Issue (4): 468-474.doi: 10.17520/biods.2019002

• Reviews • Previous Article    

Fitness advantage and maintenance mechanisms of dimorphic mixed- mating plants

Hu Wenzhao1, Zhao Jimin1, Zhang Yanwen1, 2, *()   

  1. 1 College of Life Science, Changchun Normal University, Changchun 130032
    2 College of Agriculture, Eastern Liaoning University, Dandong, Liaoning 118003
  • Received:2019-01-03 Accepted:2019-02-22 Online:2019-06-05
  • Zhang Yanwen E-mail:yanwen0209@163.com

Plants that have a dimorphic mixed-mating system consisting of open chasmogamous flowers (CH) and closed cleistogamous flowers (CL) have special reproductive strategies. Further research on CH-CL mating systems can help us understand the maintenance mechanism, evolutionary trends and strategies of plants in response to environmental change. This paper reviews existing literatures on dimorphic flowers (dimorphic mixed-mating system) of CH-CL systems including the effects of different abiotic and biological factors on the growth, development and relative proportion of flowers. It also reviews the maintenance mechanisms and evolutionary significance of dimorphic flowers. Recent researches of CH-CL system and remaining scientific questions are outlined and the new understanding of CH-CL systems based on recent research is reviewed. We suggests that it is necessary to accurately detect the differences between the progeny of the two flower forms in heterogeneous habitats and at different stages of life history. The microenvironment (separation pattern and location effect of seeds) is also identified as being very important for seed germination and the growth and development of the two flower types. Additionally, the expression mechanism of the spatial and temporal differences in flower types (the pattern of flowering and sensitivity to heterogeneous habitats) may be related to changes at the levels of endogenous hormones. It has been said that the distribution of populations of different natures and different sources, and the impact on the genetic structure, is likely to be an important mechanism for the maintenance of the system. Therefore, in-depth research and scientific understanding of dimorphic mixed-mating system may be of great significance for understanding the evolution of the entire plant reproductive system.

Key words: CH-CL system, fitness, Chasmogamous flower, Cleistogamous flower, Maintenance mechanism

[1] Ansaldi BH, Weber JJ, Franks SJ ( 2018) The role of phenotypic plasticity and pollination environment in the cleistogamous, mixed mating breeding system of Triodanis perfoliata. Plant Biology, 20, 1068-1074.
doi: 10.1111/plb.2018.20.issue-6
[2] Audigeos D, Brousseau L, Traissac S, Scotti-Saintagne C, Scotti I ( 2013) Molecular divergence in tropical tree populations occupying environmental mosaics. Journal of Evolution Biology, 26, 529-544.
doi: 10.1111/jeb.2013.26.issue-3
[3] Barnett LL, Troth A, Willis JH ( 2018) Plastic breeding system response to day length in the California wildflower Mimulus douglasii. American Journal of Botany, 105, 779-787.
doi: 10.1002/ajb2.1063
[4] Bell TJ, Quinn JA ( 1987) Effects of soil moisture and light intensity on the chasmogamous and cleistogamous components of reproductive effort of Dichanthelium clandestinum populations. Canadian Journal of Botany, 65, 2243-2249.
doi: 10.1139/b87-305
[5] Berg H ( 2003) Factors influencing seed: Ovule ratios and reproductive success in four cleistogamous species: A comparison between two flower types. Plant Biology, 5, 194-202.
doi: 10.1055/s-2003-40727
[6] Berg H, Redbo-Torstensson P ( 1998) Cleistogamy as a bet- hedging strategy in Oxalis acetosella, a perennial herb. Journal of Ecology, 86, 491-500.
doi: 10.1046/j.1365-2745.1998.00272.x
[7] Berg H, Redbo-Torstensson P ( 1999) Offspring performance in three cleistogamous Viola species. Plant Ecology, 145, 49-58.
doi: 10.1023/A:1009848318794
[8] Bradshaw AD ( 1965) Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155.
doi: 10.1016/S0065-2660(08)60048-6
[9] Brown WV ( 1952) The relation of soil moisture to cleistogamy in Stipa leucotricha. Botanical Gazette, 113, 438-444.
doi: 10.1086/335732
[10] Busch JW, Delph LF ( 2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109, 553-562.
doi: 10.1093/aob/mcr219
[11] Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C ( 2017) Plant hormone signaling in flowering: An epigenetic point of view. Journal of Plant Physiology, 214, 16-27.
doi: 10.1016/j.jplph.2017.03.018
[12] Charlesworth D, Charlesworth B ( 1987) Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18, 237-268.
doi: 10.1146/annurev.es.18.110187.001321
[13] Charlesworth D, Willis JH ( 2009) The genetics of inbreeding depression. Nature Reviews Genetics, 10, 783-796.
doi: 10.1038/nrg2664
[14] Chen JB, Somta P, Chen X, Cui XY, Yuan XX, Srinives P ( 2016) Gene mapping of a Mutant Mungbean (Vigna radiata L.) using new molecular markers suggests a gene encoding a YUC4-like protein regulates the chasmogamous flower trait. Frontiers in Plant Science, 7, 830.
[15] Cheplick GP ( 2005) Biomass partitioning and reproductive allocation in the invasive, cleistogamous grass Microstegium vimineum: Influence of the light environment. Journal of Torrey Botany Society, 132, 214-224.
doi: 10.3159/1095-5674(2005)132[214:BPARAI]2.0.CO;2
[16] Connor HE ( 1998) Breeding systems in New Zealand grasses XII. Cleistogamy in Festuca. New Zealand Journal of Botany, 36, 471-476.
doi: 10.1080/0028825X.1998.9512585
[17] Conti L ( 2017) Hormonal control of the floral transition: Can one catch them all? Developmental Biology, 430, 288-301.
doi: 10.1016/j.ydbio.2017.03.024
[18] Culley TM ( 2000) Inbreeding depression and floral type differences in Viola canadensis (Violaceae), a perennial herb with chasmogamous and cleistogamous flowers. Canadian Journal of Botany, 78, 1420-1429.
[19] Culley TM ( 2002) Reproductive biology and delayed selfing in Viola pubescens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. International Journal of Plant Science, 163, 113-122.
doi: 10.1086/324180
[20] Culley TM, Klooster MR ( 2007) The cleistogamous breeding system: A review of its frequency, evolution, and ecology in angiosperms. The Botanical Review, 73, 1-30.
doi: 10.1663/0006-8101(2007)73[1:TCBSAR]2.0.CO;2
[21] Eckstein RL, Otte A ( 2005) Effects of cleistogamy and pollen source on seed production and offspring performance in three endangered violets. Basic Applied Ecology, 6, 339-350.
doi: 10.1016/j.baae.2004.12.002
[22] Fisher RA ( 1941) Average excess and average effect of a gene substitution. Annals of Eugenics, 11, 53-63.
doi: 10.1111/j.1469-1809.1941.tb02272.x
[23] Fu QZ ( 2018) Study on the mechanism of the influence of light on plant growth. Technology and Economic Guide, ( 1), 94.(in Chinese)
[ 付琪珍 ( 2018) 光对植物生长影响机理研究. 科技经济导刊, ( 1), 94.]
[24] Heywood JS, Michalski JS, McCann BK, Russo AD, Andres KJ, Hall AR, Middleton TC ( 2017) Genetic and environmental integration of the hawkmoth pollination syndrome in Ruellia humilis (Acanthaceae). Annals of Botany, 119, 1143-1155.
doi: 10.1093/aob/mcx003
[25] Holsinger KE ( 1986) Dispersal and plant mating systems: The evolution of self-fertilization in subdivided populations. Evolution, 40, 405-413.
doi: 10.1111/evo.1986.40.issue-2
[26] Husband BC, Schemske DW ( 1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution, 50, 54-70.
doi: 10.1111/evo.1996.50.issue-1
[27] Jones NT, Husband BC, MacDougall AS ( 2013) Reproductive system of a mixed-mating plant responds to climate perturbation by increased selfing. Proceedings of the Royal Society B: Biological Sciences, 280, 1766.
[28] Karron JD, Ivey CT, Mitchell RJ, Whitehead MR, Peakall R, Case AL ( 2012) New perspectives on the evolution of plant mating systems. Annals of Botany, 109, 493-503.
doi: 10.1093/aob/mcr319
[29] Kaul V, Koul AK ( 2009) Sex expression and breeding strategy in Commelina benghalensis. Journal of Biosciences, 34, 977-990.
doi: 10.1007/s12038-009-0112-5
[30] Kawano S, Hara T, Hiratsuka A, Matsuo K, Hirota I ( 1990) Reproductive biology of an annual, Polygonum thunbergii (Polygonaceae): Spatio-temporal changes in growth, structure and reproductive components of a population over an environmental gradient. Plant Species Biology, 5, 97-120.
doi: 10.1111/psb.1990.5.issue-1
[31] Kim I, Carr GD ( 1990) Reproductive biology and uniform culture of Portulaca in Hawaii. Pacific Science, 44, 123-129.
[32] Koul M, Sharma N ( 2012) Rates and pattern of ovule abortion vis-à-vis in situ pollen germination in some populations of Trifolium fragiferum L. Journal of Biosciences, 37, 1067-1077.
doi: 10.1007/s12038-012-9274-7
[33] Li QX, Huo QD, Wang J, Zhao J, Sun K, He CY ( 2016) Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica. BMC Plant Biology, 16, 151.
doi: 10.1186/s12870-016-0832-2
[34] Lord EM ( 1981) Cleistogamy: A tool for the study of floral morphogenesis, function and evolution. The Botany Review, 47, 421-449.
doi: 10.1007/BF02860538
[35] Lu Y ( 2002) Why is cleistogamy a selected reproductive strategy in Impatiens capensis (Balsaminaceae)? Biological Journal of the Linnean Society, 75, 543-553.
doi: 10.1046/j.1095-8312.2002.00039.x
[36] Mara CD, Irish VF ( 2008) Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiology, 47, 707-718.
[37] Masuda M, Yahara T ( 1994) Reproductive ecology of a cleistogamous annual, Impatiens nolitangere L. occurring under different environmental conditions. Ecological Research, 9, 67-75.
doi: 10.1007/BF02347243
[38] Masuda M, Yahara T, Maki M ( 2001) An ESS model for the mixed production of cleistogamous and chasmogamous flowers in a facultative cleistogamous plant. Evolutionary Ecology Research, 3, 429-439.
[39] Masuda M, Yahara T, Maki M ( 2004) Evolution of floral dimorphism in a cleistogamous annual, Impatiens nolitangere L. occurring under different environmental conditions. Ecological Research, 19, 571-580.
doi: 10.1111/ere.2004.19.issue-6
[40] McCall C, Mitchell-Olds T, Waller DM ( 1989) Fitness consequences of outcrossing in Impatiens capensis: Tests of the frequency-dependent and sib-competition models. Evolution, 43, 1075-1084.
[41] Munguía-Rosas MA, Abdala-Roberts L, Parra-Tabla V ( 2013a) Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora. Oecologia, 173, 871-880.
doi: 10.1007/s00442-013-2649-0
[42] Munguía-Rosas MA, Campos-Navarrete MJ, Parra-Tabla V ( 2013b) The effect of pollen source vs. flower type on progeny performance and seed predation under contrasting light environments in a cleistogamous herb. PLoS ONE, 8, e80934.
doi: 10.1371/journal.pone.0080934
[43] Munguía-Rosas MA, Parra-Tabla V, Ollerton J, Cervera JC ( 2012) Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae). Annals of Botany, 109, 343-350.
doi: 10.1093/aob/mcr284
[44] Murren CJ, Dudash MR ( 2012) Variation in inbreeding depression and plasticity across native and non-native field environments. Annals of Botany, 109, 621-632.
doi: 10.1093/aob/mcr325
[45] Oakley CG, Winn AA ( 2008) Population-level and family-level inbreeding depression in a cleistogamous perennial. International Journal of Plant Science, 169, 523-530.
doi: 10.1086/528752
[46] Parra-Tabla V, Munguía-Rosas M, Campos-Navarrete MJ, Ramos-Zapata JA ( 2014) Effects of flower dimorphism and light environment on arbuscular mycorrhizal colonisation in a cleistogamous herb. Plant Biology, 17, 163-168.
[47] Redbo-Torstensson P, Berg H ( 1995) Seasonal cleistogamy: A conditional strategy to provide reproductive assurance. Acta Botanica Neerlandica, 44, 247-256.
doi: 10.1111/plb.1995.44.issue-3
[48] Schmitt J, Gamble SE ( 1990) The effect of distance from the parental site on offspring performance and inbreeding depression in Impatiens capensis: A test of the local adaptation hypothesis. Evolution, 44, 2022-2030.
[49] Shu K, Luo X, Meng Y, Yang W ( 2018) Toward a molecular understanding of abscisic acid actions in floral transition. Plant and Cell Physiology, 59, 215-221.
doi: 10.1093/pcp/pcy007
[50] Stojanova B, Maurice S, Cheptou PO ( 2016) Is plasticity across seasons adaptive in the annual cleistogamous plant Lamium amplexicaule? Annals of Botany, 117, 681-691.
doi: 10.1093/aob/mcw013
[51] Uphof JC ( 1938) Cleistogamic flowers. Botanical Review, 4, 21-49.
doi: 10.1007/BF02869833
[52] Waller DM ( 1984) Differences in fitness between seedlings derived from cleistogamous and chasmogamous flowers in Impatiens capensis. Evolution, 38, 427-440.
doi: 10.1111/evo.1984.38.issue-2
[53] Wang CH, Du W, Wang XF ( 2017) Reproductive investment in a cleistogamous morph of Polygonum jucundum (Polygonaceae). Plant Systematics and Evolution, 303, 559-563.
doi: 10.1007/s00606-017-1388-9
[54] Wang Y, Ballard HE, McNally RR, Wyatt SE ( 2013) Gibberellins are involved but not sufficient to trigger a shift between chasmogamous-cleistogamous flower types in Viola pubescens. Journal of the Torrey Botanical Society, 140, 1-8.
doi: 10.3159/TORREY-D-12-00044.1
[55] Wang Y, Li QX, Sun K, Chen W ( 2017) The study on dimorphic flower development and the soluble sugar and starch content in Viola philippica. Acta Horticulturae Sinica, (in Chinese with English abstract) 44, 323-329.
[ 王镛, 李巧峡, 孙坤, 陈纹 ( 2017) 紫花地丁开放花与闭锁花的发育及可溶性糖与淀粉含量的研究. 园艺学报, 44, 323-329.]
[56] Wilken DH ( 1982) The balance between chasmogamy and cleistogamy in Collomia grandiflora (Polemoniaceae). American Journal of Botany, 69, 1326-1333.
doi: 10.1002/j.1537-2197.1982.tb13379.x
[57] Winn AA, Moriuchi KS ( 2009) The maintenance of mixed mating by cleistogamy in the perennial violet Viola septemloba (Violaceae). American Journal of Botany, 96, 2074-2079.
doi: 10.3732/ajb.0900048
[58] Zhang LH, Sun Q, Zhao JM, Zhang YW ( 2018) Plasticity in the reproductive strategy of a clonal cleistogamous species, Pseudostellaria heterophylla. Plant Ecology, 219, 1493-1502.
doi: 10.1007/s11258-018-0896-1
[59] Zhang XZ, Guo BJ, Lan GF, Li HT, Lin SH, Ma J, Lv C, Xu RG ( 2016) A major QTL, which is co-located with, and two minor QTLs are associated with glume opening angle in barley (Hordeum vulgare L.). Frontiers in Plant Science, 7, 1585.
[1] Lu Ningna, Liu Zhenheng, Ma Yan, Lu Guangmei, Meng Xiuxiang. (2019) Phenotypic selection analysis of flower traits in Delphinium kamaonense var. glabrescens (Ranunculaceae) . Biodiv Sci, 27(7): 772-777.
[2] Yu Wensheng, Guo Yaolin, Jiang Jiajia, Sun Keke, Ju Ruiting. (2019) Comparison of the life history of a native insect Laelia coenosa with a native plant Phragmites australis and an invasive plant Spartina alterniflora . Biodiv Sci, 27(4): 433-438.
[3] Chengjin Chu, Youshi Wang, Yu Liu, Lin Jiang, Fangliang He. (2017) Advances in species coexistence theory . Biodiv Sci, 25(4): 345-354.
[4] Qiao-Xia LI, Xiao-Xia HUANG, Wen CHEN, Yong WANG, Kun SUN. (2017) Patterns of flower morphology and structural changes during interconversion between chasmogamous and cleistogamous flowers in Viola philippica . Chin J Plan Ecolo, 41(11): 1190-1198.
[5] Chan Zhang, Shaoqin Zha, Yongping Yang, Yuanwen Duan. (2012) Effects of the yellow barbs of the staminodes on reproductive success of Delphinium caeruleum (Ranunculaceae) . Biodiv Sci, 20(3): 348-353.
[6] Lele Liu, Zuojun Liu, Guozhen Du, Zhigang Zhao. (2012) Floral traits, pollinator assemblages, and phenotypic selection at different flowering time for Trollius ranunculoides . Biodiv Sci, 20(3): 317-323.
[7] Bao-Rong Lu, Hui Xia, Wei Wang, Xiao Yang. (2010) Impacts of natural hybridization and introgression on biological invasion of plant species . Biodiv Sci, 18(6): 577-589.
[8] Wen Lü, Wenzhe Liu. (2010) Pollination Biology in Androdioecious Species Tapiscia sinensis (Staphyleaceae) . Chin Bull Bot, 45(06): 713-722.
[9] Yuanheng Feng;Huogen Li*;Honglian Zhang. (2010) A Case Study of Gamete Selection and Male Reproduction Fitness in Liriodendron . Chin Bull Bot, 45(01): 52-58.
[10] WANG Yang, DU Guo-Zhen, GUO Shu-Qing, ZHAO Zhi-Gang. (2009) TRADE-OFF BETWEEN SIZE AND NUMBER OF CAPITULUM AND SEED IN SAUSSUREA JAPONICA: EFFECTS OF RESOURCE AVAILABILITY . Chin J Plan Ecolo, 33(4): 681-688.
[11] Bao-Rong Lu, Hui Xia, Xiao Yang, Xin Jin, Ping Liu, Wei Wang. (2009) Evolutionary theory of hybridization-introgression: its implication in en-vironmental risk assessment and research of transgene escape . Biodiv Sci, 17(4): 362-377.
[12] GAO Jiang-Yun, YANG Zi-Hui, LI Qing-Jun. (2009) EFFECTS OF FLORAL LONGEVITY ON MALE AND FEMALE FITNESS IN HEDYCHIUM VILLOSUM VAR. VILLOSUM . Chin J Plan Ecolo, 33(1): 89-96.
[13] ZHAO Xue-Jie, TAN Dun-Yan. (2007) SELECTIVE ABORTION AND ITS EVOLUTIONARY, ECOLOGICAL SIGNIFICANCE IN SEED PLANTS . Chin J Plan Ecolo, 31(6): 1007-1018.
[14] SONG Xiao-Ling, HUANGFU Chao-He, QIANG Sheng. (2007) GENE FLOW FROM TRANSGENIC GLUFOSINATE-OR GLYPHOSATE-TOLERANT OILSEED RAPE TO WILD RAPE . Chin J Plan Ecolo, 31(4): 729-737.
[15] ZHU Zhi-Hong, LIU Jian-Xiu, WANG Xiao-An. (2007) REVIEW OF PHENOTYPIC PLASTICITY AND HIERARCHICAL SELECTION IN CLONAL PLANTS . Chin J Plan Ecolo, 31(4): 588-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed