生物多样性 ›› 2019, Vol. 27 ›› Issue (2): 219-234. DOI: 10.17520/biods.2018319
所属专题: 物种形成与系统进化
• 综述 • 上一篇
胡颖1,2,王茜1,2,张新新1,2,周玮1,2,陈晓阳1,2,胡新生1,2,*()
收稿日期:
2018-12-02
接受日期:
2019-02-12
出版日期:
2019-02-20
发布日期:
2019-04-16
通讯作者:
胡新生
基金资助:
Hu Ying1,2,Wang Xi1,2,Zhang Xinxin1,2,Zhou Wei1,2,Chen Xiaoyang1,2,Hu Xinsheng1,2,*()
Received:
2018-12-02
Accepted:
2019-02-12
Online:
2019-02-20
Published:
2019-04-16
Contact:
Hu Xinsheng
摘要:
谱系地理学研究旨在探究历史上发生的影响目前遗传谱系系统发育和空间分布格局关系的生态与进化过程。叶绿体DNA具有单亲遗传、低突变率、单倍体等特征, 其分子标记不同程度地保留着植物长期进化的历史遗传痕迹, 有助于深度解析谱系地理变异的形成机制。本文探讨了上述特征是怎样影响分子标记的选择、扩大或缩小群体遗传结构分化、延长或缩短空间基因溯祖时间、促进或阻碍种间基因渐渗及谱系分选(复系、并系和单系形成)进程, 重点阐述了这些影响过程的理论基础, 并结合实际例子阐述谱系地理研究进展。由于位点间在突变率、选择强度及它们与漂变互作等方面存在异质性, 今后一个研究重点就是基于叶绿体全基因组序列分析谱系地理变化格局, 包括分析DNA位点间的基因渐渗或基因流动程度差异分布及沿着叶绿体DNA序列上谱系分选差异分布。
胡颖, 王茜, 张新新, 周玮, 陈晓阳, 胡新生 (2019) 叶绿体DNA标记在谱系地理学中的应用研究进展. 生物多样性, 27, 219-234. DOI: 10.17520/biods.2018319.
Hu Ying, Wang Xi, Zhang Xinxin, Zhou Wei, Chen Xiaoyang, Hu Xinsheng (2019) Advancing phylogeography with chloroplast DNA markers. Biodiversity Science, 27, 219-234. DOI: 10.17520/biods.2018319.
物种 Species | 主要谱系分析 Main phylogeographic analysis | 谱系地理形成机制 Mechanisms of forming phylogeographic structure | 参考文献 References |
---|---|---|---|
海仙报春 Primula poissonii | Nst > Gst | 异域片断化 Allopatric fragmentation | |
绵参 Eriophyton wallichii | Nst = Gst | 无谱系结构、地形和环境及“孤岛效应”形成 No phylogeographic structure due to the effects of topography, environments and “isolated islands” of habitats | |
蒙古绣线菊 Spiraea mongolica | Nst > Gst, NCA | 第四纪冰期-间冰期气候动荡, 青藏高原隆升的共同作用 Joint effects of climate oscillation in Quaternary glacial-interglacial periods and the rise of the Qinghai-Tibetan Plateau | |
手参 Gymnadenia conopsea | Nst < Gst | 无谱系地理分化、群体未经历扩张 Insignificant phylogeographic structure and no population expansion | |
肋果沙棘 Hippophae neurocarpa | Nst > Gst, NCA | 避难所隔离分化及邻域扩张 Allopatric isolation of refugia and contiguous range expansion | |
远志 Polygala tenuifolia | Nst > Gst | 地理隔离 Geographic isolation | |
祁连圆柏 Juniperus przewalskii | Gst | 多个避难所、瓶颈效应和奠基者效应 Multiple refugia, bottleneck and founder effects | |
虎耳草 Saxifraga stolonifera | Nst = Gst | 无谱系地理结构、多个微型避难所、群体片断化 No phylogeographic structure, multiple small refugia, and population fragmentation | |
半日花 Helianthemum soongoricum | Nst > Gst | 地理隔离 Geographic isolation | |
伯乐树 Bretschneidera sinensis | Gst | 生境破碎化、地理隔离 Habitat fragmentation and geographic isolation | |
南方红豆杉 Taxus wallichiana var. Mairei | Gst, NCA | 弱谱系地理结构、片断化和隔离 Weak phylogeographic structure, fragmentation and isolation |
表1 基于cpDNA单倍型在群体内与群体间的变异检测谱系地理结构
Table 1 Testing phylogeographic structure based on the variation of cpDNA haplotypes within and among populations
物种 Species | 主要谱系分析 Main phylogeographic analysis | 谱系地理形成机制 Mechanisms of forming phylogeographic structure | 参考文献 References |
---|---|---|---|
海仙报春 Primula poissonii | Nst > Gst | 异域片断化 Allopatric fragmentation | |
绵参 Eriophyton wallichii | Nst = Gst | 无谱系结构、地形和环境及“孤岛效应”形成 No phylogeographic structure due to the effects of topography, environments and “isolated islands” of habitats | |
蒙古绣线菊 Spiraea mongolica | Nst > Gst, NCA | 第四纪冰期-间冰期气候动荡, 青藏高原隆升的共同作用 Joint effects of climate oscillation in Quaternary glacial-interglacial periods and the rise of the Qinghai-Tibetan Plateau | |
手参 Gymnadenia conopsea | Nst < Gst | 无谱系地理分化、群体未经历扩张 Insignificant phylogeographic structure and no population expansion | |
肋果沙棘 Hippophae neurocarpa | Nst > Gst, NCA | 避难所隔离分化及邻域扩张 Allopatric isolation of refugia and contiguous range expansion | |
远志 Polygala tenuifolia | Nst > Gst | 地理隔离 Geographic isolation | |
祁连圆柏 Juniperus przewalskii | Gst | 多个避难所、瓶颈效应和奠基者效应 Multiple refugia, bottleneck and founder effects | |
虎耳草 Saxifraga stolonifera | Nst = Gst | 无谱系地理结构、多个微型避难所、群体片断化 No phylogeographic structure, multiple small refugia, and population fragmentation | |
半日花 Helianthemum soongoricum | Nst > Gst | 地理隔离 Geographic isolation | |
伯乐树 Bretschneidera sinensis | Gst | 生境破碎化、地理隔离 Habitat fragmentation and geographic isolation | |
南方红豆杉 Taxus wallichiana var. Mairei | Gst, NCA | 弱谱系地理结构、片断化和隔离 Weak phylogeographic structure, fragmentation and isolation |
模型 Models | 参考文献 References |
---|---|
基因频率 Gene frequency | |
Fst (岛屿模型) Fst (Island model) | |
基于私有基因途径 Private allele | |
极大似然估计 Maximum likelihood estimate | |
DNA序列 DNA sequence | |
Fst(基因树途径) Fst (gene tree approach) | |
隔离-迁移模型 Isolation-with-migration (IM) model | |
起始隔离-迁移模型 Initial-isolation-with-migration (IIM) model | Herbots, 2017 |
表2 基因流间接估算模型与方法
Table 2 Models and methods for indirect estimation of gene flow
模型 Models | 参考文献 References |
---|---|
基因频率 Gene frequency | |
Fst (岛屿模型) Fst (Island model) | |
基于私有基因途径 Private allele | |
极大似然估计 Maximum likelihood estimate | |
DNA序列 DNA sequence | |
Fst(基因树途径) Fst (gene tree approach) | |
隔离-迁移模型 Isolation-with-migration (IM) model | |
起始隔离-迁移模型 Initial-isolation-with-migration (IIM) model | Herbots, 2017 |
nDNA/表型性状 nDNA/ Phenotypic traits | cpDNA | 可能的进化过程 Possible evolutionary processes | nDNA标记 nDNA markers | cpDNA标记 cpDNA markers | 分类群 Taxonomic groups | 参考文献 References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
复系 Polyphyly | 复系 Polyphyly | 物种形成初期, nDNA和cpDNA均以漂变过程为主 Lineage sorting is mainly driven by drift process for both nDNA and cpDNA in the incipient stage of speciation. | LBD6 | matK, trnD-T | 葛藤属(豆科) Pueraria (Leguminosae) | ||||||||
trnK intron, trnL-F | 姜味草属(唇形科) Micromeria (Lamiaceae) | ||||||||||||
ITS1-5.8S-ITS2 | trnL-F, trnD-T | 长喙藓属(青藓科) Rhynchostegium (Brachytheciaceae) | Huttunen & | ||||||||||
ITS | atpB-rbcL | 丁香蓼属(柳叶菜科) Ludwigia (Onagraceae) | |||||||||||
ITS, 表型 Phenotype | trnL-F | 唇柱苣苔属 Chirita | |||||||||||
ITS | trnT-L | 火把莲属(独尾草科) Kniphofia (Asphodelaceae) | |||||||||||
ITS | trnL-F, psbA-trnH | 瓦苇属(独尾草科) Haworthia (Asphodelaceae) | |||||||||||
并系 Paraphyly | cpDNA以漂变或自然选择过程为主; nDNA存在杂交或渐渗过程 Lineage sorting is mainly driven by drift or selection process for cpDNA but by hybridization or introgression process for nDNA. | - | - | - | - | ||||||||
单系 Monophyly | cpDNA以漂变或自然选择为主; nDNA存在杂交或渐渗过程 Lineage sorting is mainly driven by drift or selection process for cpDNA but by hybridization or introgression process for nDNA. | - | - | - | - | ||||||||
nDNA/表型性状 nDNA/ Phenotypic traits | cpDNA | 可能的进化过程 Possible evolutionary processes | nDNA标记 nDNA markers | cpDNA标记 cpDNA markers | 分类群 Taxonomic groups | 参考文献 References | |||||||
并系 Paraphyly | 复系 Polyphyly | nDNA以自然选择过程为主; cpDNA存在渐渗过程 Lineage sorting is mainly driven by selection process for nDNA but by introgression process for cpDNA. | - | - | - | - | |||||||
并系 Paraphyly | nDNA和cpDNA均以漂变过程为主, 或存在渐渗/基因流过程 Lineage sorting is mainly driven by drift process or introgression/gene flow process for both nDNA and cpDNA. | ITS, ETS | trnQ-rps16, rpl32-trnL, rps16, trnS-G, trnH-psbA | 可草拟库氏金鱼花 (苦苣苔科) Columnea kucyniakii (Gesneriaceae) | |||||||||
卫星DNA Microsatellites DNA | atpL-H, rps16-trnK | 穗花杉(红豆杉科) Amentotaxus argotaenia (Taxaceae) | |||||||||||
ITS | matK, rbcL | 松属单维管束松亚属(松科) Pinus subgenus Strobus (Pinaceae) | |||||||||||
单系 Monophyly | cpDNA以漂变或自然选择过程为主Lineage sorting for cpDNA is mainly driven by drift or selection process. | - | - | ||||||||||
单系 Monophyly | 复系 Polyphyly | nDNA以自然选择过程为主; cpDNA以漂变过程为主或存在渐渗过程 Lineage sorting is mainly driven by selection process for nDNA but by drift or introgression process for cpDNA. | ITS | trnL-F, rpl16 | 克非亚草属(千屈菜科) Cuphea (Lythraceae) | ||||||||
并系 Paraphyly | nDNA以自然选择过程为主; cpDNA以漂变过程为主, 或存在渐渗过程 Lineage sorting is mainly driven by selection process for nDNA but by drift or introgression process for cpDNA. | - | - | - | |||||||||
单系 Monophyly | nDNA和cpDNA均以漂变过程为主, 或均存在自然选择过程 Lineage sorting for both nDNA and cpDNA is mainly driven by drift or selection process. | ITS, 表型 ITS, phenotype | trnT-L | 常春藤(五加科) Hedera (Araliaceae) | |||||||||
表型 Phenotype | rbcL, ndhF | 柳叶菜科 Onagraceae | |||||||||||
ITS | matK, trnL, trnL-F, trnS-G, trnD-T, psbM-trnD | 花荵科 Polemoniaceae | |||||||||||
表型 Phenotype | rbcL, rps16, atpB-rbcL | 茜草属(茜草科) Kelloggiatorrey (Rubiaceae) | |||||||||||
ITS | rbcL, trnL-F, trnK-matK, psbA-trnH | 春蓼属(蓼科) Persicaria (Polygonaceae) | 2008 | ||||||||||
ITS1-5.8S-ITS2 | trnL-F | 红杉花属(花荵科) Ipomopsis (Polemoniaceae) | 2010 |
表3 cpDNA和nDNA谱系分选进程比较及可能的进化过程
Table 3 Comparison of lineage sorting phases between cpDNA and nDNA and the possible evolutionary processes
nDNA/表型性状 nDNA/ Phenotypic traits | cpDNA | 可能的进化过程 Possible evolutionary processes | nDNA标记 nDNA markers | cpDNA标记 cpDNA markers | 分类群 Taxonomic groups | 参考文献 References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
复系 Polyphyly | 复系 Polyphyly | 物种形成初期, nDNA和cpDNA均以漂变过程为主 Lineage sorting is mainly driven by drift process for both nDNA and cpDNA in the incipient stage of speciation. | LBD6 | matK, trnD-T | 葛藤属(豆科) Pueraria (Leguminosae) | ||||||||
trnK intron, trnL-F | 姜味草属(唇形科) Micromeria (Lamiaceae) | ||||||||||||
ITS1-5.8S-ITS2 | trnL-F, trnD-T | 长喙藓属(青藓科) Rhynchostegium (Brachytheciaceae) | Huttunen & | ||||||||||
ITS | atpB-rbcL | 丁香蓼属(柳叶菜科) Ludwigia (Onagraceae) | |||||||||||
ITS, 表型 Phenotype | trnL-F | 唇柱苣苔属 Chirita | |||||||||||
ITS | trnT-L | 火把莲属(独尾草科) Kniphofia (Asphodelaceae) | |||||||||||
ITS | trnL-F, psbA-trnH | 瓦苇属(独尾草科) Haworthia (Asphodelaceae) | |||||||||||
并系 Paraphyly | cpDNA以漂变或自然选择过程为主; nDNA存在杂交或渐渗过程 Lineage sorting is mainly driven by drift or selection process for cpDNA but by hybridization or introgression process for nDNA. | - | - | - | - | ||||||||
单系 Monophyly | cpDNA以漂变或自然选择为主; nDNA存在杂交或渐渗过程 Lineage sorting is mainly driven by drift or selection process for cpDNA but by hybridization or introgression process for nDNA. | - | - | - | - | ||||||||
nDNA/表型性状 nDNA/ Phenotypic traits | cpDNA | 可能的进化过程 Possible evolutionary processes | nDNA标记 nDNA markers | cpDNA标记 cpDNA markers | 分类群 Taxonomic groups | 参考文献 References | |||||||
并系 Paraphyly | 复系 Polyphyly | nDNA以自然选择过程为主; cpDNA存在渐渗过程 Lineage sorting is mainly driven by selection process for nDNA but by introgression process for cpDNA. | - | - | - | - | |||||||
并系 Paraphyly | nDNA和cpDNA均以漂变过程为主, 或存在渐渗/基因流过程 Lineage sorting is mainly driven by drift process or introgression/gene flow process for both nDNA and cpDNA. | ITS, ETS | trnQ-rps16, rpl32-trnL, rps16, trnS-G, trnH-psbA | 可草拟库氏金鱼花 (苦苣苔科) Columnea kucyniakii (Gesneriaceae) | |||||||||
卫星DNA Microsatellites DNA | atpL-H, rps16-trnK | 穗花杉(红豆杉科) Amentotaxus argotaenia (Taxaceae) | |||||||||||
ITS | matK, rbcL | 松属单维管束松亚属(松科) Pinus subgenus Strobus (Pinaceae) | |||||||||||
单系 Monophyly | cpDNA以漂变或自然选择过程为主Lineage sorting for cpDNA is mainly driven by drift or selection process. | - | - | ||||||||||
单系 Monophyly | 复系 Polyphyly | nDNA以自然选择过程为主; cpDNA以漂变过程为主或存在渐渗过程 Lineage sorting is mainly driven by selection process for nDNA but by drift or introgression process for cpDNA. | ITS | trnL-F, rpl16 | 克非亚草属(千屈菜科) Cuphea (Lythraceae) | ||||||||
并系 Paraphyly | nDNA以自然选择过程为主; cpDNA以漂变过程为主, 或存在渐渗过程 Lineage sorting is mainly driven by selection process for nDNA but by drift or introgression process for cpDNA. | - | - | - | |||||||||
单系 Monophyly | nDNA和cpDNA均以漂变过程为主, 或均存在自然选择过程 Lineage sorting for both nDNA and cpDNA is mainly driven by drift or selection process. | ITS, 表型 ITS, phenotype | trnT-L | 常春藤(五加科) Hedera (Araliaceae) | |||||||||
表型 Phenotype | rbcL, ndhF | 柳叶菜科 Onagraceae | |||||||||||
ITS | matK, trnL, trnL-F, trnS-G, trnD-T, psbM-trnD | 花荵科 Polemoniaceae | |||||||||||
表型 Phenotype | rbcL, rps16, atpB-rbcL | 茜草属(茜草科) Kelloggiatorrey (Rubiaceae) | |||||||||||
ITS | rbcL, trnL-F, trnK-matK, psbA-trnH | 春蓼属(蓼科) Persicaria (Polygonaceae) | 2008 | ||||||||||
ITS1-5.8S-ITS2 | trnL-F | 红杉花属(花荵科) Ipomopsis (Polemoniaceae) | 2010 |
[1] |
Arntzen J, Vries W, Canestrelli D, Martinez-Solano I ( 2017) Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Molecular Ecology, 26, 5663-5675.
DOI URL PMID |
[2] | Avise JC ( 2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts. |
[3] |
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Sauders NC ( 1987) Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489-522.
DOI URL |
[4] |
Bai WN, Wang WT, Zhang DY ( 2014) Contrasts between the phylogeographic patterns of chloroplast and nuclear DNA highlight a role for pollen-mediated gene flow in preventing population divergence in an East Asian temperate tree. Molecular Phylogenetics and Evolution, 81, 37-48.
DOI URL PMID |
[5] |
Bao WY, Zhang Y, Lin PC, Nan P, Huang YY, Jin HF, Zhong Y ( 2016) Study on the pedigree geography of plant ginseng in Qinghai-Tibet Plateau. Biotechnology Bulletin, 32(12), 96-102. (in Chinese with English abstract)
DOI URL |
[ 鲍武印, 张阳, 林鹏程, 南蓬, 黄艳燕, 靳浩飞, 钟扬 ( 2016) 青藏高原植物手参的谱系地理学研究. 生物技术通报, 32(12), 96-102.]
DOI URL |
|
[6] |
Barber JC, Ghebretinsae A, Graham SA ( 2010) An expanded phylogeny of Cuphea (Lythraceae) and a North American monophyly. Plant Systematics and Evolution, 289, 35-44.
DOI URL |
[7] |
Barnard-Kubow KB, McCoy MA, Galloway LF ( 2017) Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. New Phytologist, 213, 1466-1476.
DOI URL PMID |
[8] | Barton NH, Gale KS ( 1993) Genetic analysis of hybrid zones. In: Hybrid Zones and the Evolutionary Process (ed. Harrison RG). Oxford University Press, New York. |
[9] | Barton NH, Slatkin M ( 1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56, 409-415. |
[10] |
Beheregaray LB ( 2008) Twenty years of phylogeography: The state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17, 3754-3774.
DOI URL PMID |
[11] | Bock DG, Andrew RL, Rieseberg LH ( 2014) On the adaptive value of cytoplasmic genomes in plants. Molecular Ecology, 23, 4899-4911. |
[12] |
Brauchler C, Meimberg H, Abele T, Heubl G ( 2005) Polyphyly of the genus Micromeria (Lamiaceae): Evidence from cpDNA sequence data. Taxon, 54, 639-650.
DOI URL |
[13] |
Brown JKM, Maan ME, Cummings ME, Summers K ( 2010) Evidence for selection on coloration in a Panamanian poison frog: A coalescent-based approach. Journal of Biogeography, 37, 891-901.
DOI URL |
[14] |
Byrne M, Hankinson M ( 2012) Testing the variability of chloroplast sequences for plant phylogeography. Australian Journal of Botany, 60, 569-574.
DOI URL |
[15] | Charlesworth B, Morgan MT, Charlesworth D ( 1993) The effect of deleterious mutations on neutral molecular variation. Genetics, 134, 1289-1303. |
[16] |
CBOL Plant Working Group ( 2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA, 106, 12794-12797.
DOI URL PMID |
[17] | Chmielewski M, Meyza K, Chybicki IJ, Dzialuk A, Litkowiec M, Burczyk J ( 2015) Chloroplast microsatellites as a tool for phylogeographic studies: The case of white oaks in Poland. iForest-Biogeosciences & Forestry, 8, 765-771. |
[18] |
Corriveau JL, Coleman AW ( 1988) Rapid screening methods to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany, 75, 1443-1458.
DOI URL |
[19] |
Costa RJ, Wilkinson-Herbots H ( 2017) Inference of gene flow in the process of speciation: An efficient maximum-likelihood method for isolation-with-initial-migration model. Genetics, 205, 1597-1618.
DOI URL PMID |
[20] | Coyne JA, Orr HA ( 2004) Speciation. Sinauer Associates, Inc, Sunderland, MA. |
[21] |
Cutter AD ( 2013) Integrating phylogenetics, phylogeography and population genetics through genomes and evolutionary theory. Molecular Phylogenetics and Evolution, 69, 1172-1185.
DOI URL PMID |
[22] |
Degnan JH, Rosenberg NA ( 2006) Discordance of species trees with their most likely gene trees. PLoS Genetics, 2, e68.
DOI URL PMID |
[23] |
Egan AN, Vatanparast M, Cagle W ( 2016) Parsing polyphyletic Pueraria: Delimiting distinct evolutionary lineages through phylogeny. Molecular Phylogenetics and Evolution, 104, 44-59.
DOI URL |
[24] | Ekhvaia J, Simeone MC, Silakadze N, Abdaladze O ( 2018) Morphological diversity and phylogeography of the Georgian durmast oak (Q. petraea subsp. iberica) and related Caucasian oak species in Geogria (South Caucasus). Tree Genetics & Genomics, 14, 17. |
[25] |
Flood PJ, Heerwaarden JV, Becker F, Snoo CBD, Harbinson J, Aarts MGM ( 2016) Whole-genome hitchhiking on an organelle mutation. Current Biology, 26, 1306-1311.
DOI URL PMID |
[26] | Freeland JR, Kirk H, Petersen SD ( 2011) Molecular Ecology. Wiley-Blackwell, West Sussex, UK. |
[27] |
Funk DJ, Omland KE ( 2003) Species-level paraphyly and polyphyly: Frequency, cause, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Systematics, 34, 397-423.
DOI URL |
[28] |
Garrick RC, Bonatelli IA, Hyseni C, Morales A, Pelletier TA, Perez MF, Rice E, Satler JD, Symula RE, Thomé MT, Carstens BC ( 2015) The evolution of phylogeographic data sets. Molecular Ecology, 24, 1164-1171.
DOI URL PMID |
[29] | Gavrilets S ( 2004) Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton. |
[30] |
Ge XJ, Hung KH, Ko YZ, Hsu TW, Gong X, Chiang TY , ChiangYC ( 2015) Genetic divergence and biogeographical patterns in Amentotaxus argotaenia species complex. Plant Molecular Biology Reporter, 33, 264-280.
DOI URL |
[31] | Gengji ZM, Li Y, Jia LK, Xia MZ, Gao QB ( 2018) Study on the geography of T. chinensis. Acta Botanica Boreali-Occidentalia Sinica, 38, 370-380. (in Chinese with English abstract) |
[ 更吉卓玛, 李彦, 贾留坤, 夏铭泽, 高庆波 ( 2018) 唐古特虎耳草谱系地理学研究. 西北植物学报, 38, 370-380.] | |
[32] |
Gernandt DS, Lopez GG, Garcia SO, Liston A ( 2005) Phylogeny and classification of Pinus. Taxon, 54, 29-42.
DOI URL |
[33] |
Guo W, Ng WL, Wu H, Li W, Zhang L, Qiao S, Yang X, Shi X, Huang Y ( 2018) Chloroplast phylogeography of a widely distributed mangrove species, Excoecaria agallocha, in the Indo-West Pacific region. Hydrobiologia, 807, 333-347.
DOI URL |
[34] | Han BC, Wei L, Yang XY, Liang XH, Wulanbateer, Shi SD ( 2017) Genetic diversity and lineage geographical structure of endangered plants. Inner Mongolia Forestry Science and Technology, 43(2), 16-19. (in Chinese with English abstract) |
[ 韩宝翠, 魏磊, 杨新英, 梁晓慧, 乌兰巴特尔, 史树德 ( 2017) 濒危植物半日花的遗传多样性和谱系地理结构研究. 内蒙古林业科技, 43(2), 16-19.] | |
[35] |
Han XT, Fang MF, Li ZH, Yang J, Feng L, Zhao GF ( 2014) Geographical study of the distant pedigree based on the variation of the trnL intron sequence of chloroplast DNA. Chinese Traditional and Herbal Drugs, 62, 3311-3316. (in Chinese with English abstract)
DOI URL |
[ 韩雪婷, 房敏峰, 李忠虎, 杨佳, 冯力, 赵桂仿 ( 2014) 基于叶绿体DNA trnL内含子序列变异的远志谱系地理学研究. 中草药, 62, 3311-3316.]
DOI URL |
|
[36] |
Hey J, Nielsen R ( 2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences, USA, 104, 2785-2790.
DOI URL |
[37] |
Hickerson MJ, Carstens BC, Cavenderbares J, Crandall KA, Graham CH, Johson JB, Rissler L, Victoriano PF, Yoder AD ( 2010) Phylogeography’s past, present, and future: 10 years after Avise 2000. Molecular Phylogenetics and Evolution, 54, 291-301.
DOI URL PMID |
[38] |
Hu XS ( 2000) A preliminary approach to the theory of geographical gene genealogy for plant genomes with three different modes of inheritance and its application. Acta Genetica Sinica, 27, 440-448.
URL PMID |
[39] |
Hu XS ( 2002) A review on understanding the genetic structure of population. Scientia Silvae Sinicae, 38(2), 119-128. (in Chinese with English abstract)
DOI URL |
[ 胡新生 ( 2002) 群体遗传结构的理解. 林业科学, 38(2), 119-128.]
DOI URL |
|
[40] |
Hu XS ( 2005) Tension versus ecological zones in a two-locus system. Theoretical Population Biology, 68, 119-131.
DOI URL PMID |
[41] |
Hu XS ( 2008) Barriers to the spread of neutral alleles in the cytonuclear system. Evolution, 62, 2260-2278.
DOI URL PMID |
[42] |
Hu XS ( 2011) Mating system and the critical migration rate for swamping selection. Genetics Research, 93, 233-254.
DOI URL PMID |
[43] |
Hu XS ( 2015) Mating system as a barrier to gene flow. Evolution, 69, 1158-1177.
DOI URL PMID |
[44] |
Hu XS, Filatov D ( 2016) Large-X effect in plants: Increased species divergence and reduced gene flow on Silene X-chromosome. Molecular Ecology, 25, 2609-2619.
DOI URL PMID |
[45] |
Hu XS, He FL ( 2005) Background selection and population differentiation. Journal of Theoretical Biology, 235, 207-219.
DOI URL PMID |
[46] |
Hu XS, Li BL ( 2002) Seed and pollen flow and cline discordance among genes with different modes of inheritance. Heredity, 88, 212-217.
DOI URL PMID |
[47] |
Hu XS, Yeh FC, Hu Y, Deng LT, Ennos RA, Chen XY ( 2017) High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens. Scientific Reports, 7, 43178.
DOI URL PMID |
[48] |
Huang CY, Ayliffe MA, Timmis, Jeremy N ( 2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature, 422, 72-76.
DOI URL |
[49] |
Huang J, Yang X, Zhang C, Yin X, Liu S, Li X ( 2015) Development of chloroplast microsatellite markers and analysis of chloroplast diversity in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube (Ziziphus acidojujuba Mill.). PLoS ONE, 10, e0134519.
DOI URL |
[50] |
Hudson RR, Coyne JA ( 2002) Mathematical consequences of the genealogical species concept. Evolution, 56, 1557-1565.
DOI URL PMID |
[51] | Hudson RR, Slatkin M, Maddison WP ( 1992) Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583-589. |
[52] |
Hung KH, Schaal BA, Hsu TW, Chiang YC, Peng CI, Chiang TY ( 2009) Phylogenetic relationships of diploid and polyploid species in Ludwigia sect. Isnardia (Onagraceae) based on chloroplast and nuclear DNAs. Taxon, 58, 1216-1225.
DOI URL |
[53] |
Huttunen S, Ignatov MS ( 2010) Evolution and taxonomy of aquatic species in the genus Rhynchostegium (Brachytheciaceae, Bryophyta). Taxon, 59, 791-808.
DOI URL |
[54] |
Ikeda H, Setoguchi H ( 2009) The homogenous genetic structure and inferred unique history of range shifts during the Pleistocene climatic oscillations of Arcterica nana (Maxim.) Makino (Ericaceae). Journal of Plant Research, 122, 141-151.
DOI URL PMID |
[55] |
Ikeda H, Setoguchi H ( 2013) A multilocus sequencing approach reveals the cryptic phylogeographical history of Phyllodoce nipponica Makino (Ericaceae). Biological Journal of the Linnean Society, 110, 214-226.
DOI URL |
[56] |
Johnson LA, Chan LM, Weese TL, Busby LD, McMurry S ( 2008) Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae). Molecular Phylogenetics and Evolution, 48, 997-1012.
DOI URL PMID |
[57] |
Kim ST, Donoghue MJ ( 2008) Molecular phylogeny of Persicaria (Persicarieae, Polygonaceae). Systematic Botany, 33, 77-86.
DOI URL |
[58] |
Kormutak A, Galgoci M, Sukenikova D, Bolecek P, Libantova J, Gomory D ( 2018) Maternal inheritance of chloroplast DNA in Pinus mugo Turra: A case study of Pinus mugo × Pinus sylvestris. Plant Systematics and Evolution, 304, 71-76.
DOI URL |
[59] |
Lavin M, Doyle JJ, Palmer JD ( 1990) Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution, 44, 390-402.
DOI URL PMID |
[60] |
Levin RA, Wagner WL, Hoch PC, Nepokroeff MM, Pires JC, Zimmer EA, Sytsma KJ ( 2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. American Journal of Botany, 90, 107-115.
DOI URL |
[61] |
Lexer C, Mangili S, Bossolini E, Forest F, Stolting KN, Pearman PB, Zimmermann NE, Salamin N ( 2013) Next generation’ biogeography: Towards understanding the drivers of species diversification and persistence. Journal of Biogeography, 40, 1013-1022.
DOI URL |
[62] |
Li ZH, Liu ZL, Wang ML, Qian ZQ, Zhao P, Zhu J, Yang YX, Yan XH, Li YJ, Zhao GF ( 2014) Review of speciation formation in the presence of gene flow: Evolution of reproductive isolation mechanism. Biodiversity Science, 22, 88-96. (in Chinese with English abstract)
DOI URL |
[ 李忠虎, 刘占林, 王玛丽, 钱增强, 赵鹏, 祝娟, 杨一欣, 阎晓昊, 李银军, 赵桂仿 ( 2014) 基因流存在条件下的物种形成研究述评: 生殖隔离机制进化. 生物多样性, 22, 88-96.]
DOI URL |
|
[63] |
Liu YF, Huang HW ( 2009) Advances in research on gene flow dynamics and adaptive evolution of plant populations. Chinese Bulletin of Botany, 44, 351-362. (in Chinese with English abstract)
DOI URL |
[ 刘义飞, 黄宏文 ( 2009) 植物居群的基因流动态及其相关适应进化的研究进展. 植物学报, 44, 351-362.]
DOI URL |
|
[64] | Lu BR, Xia H, Yang X, Jin X, Liu P, Wang W ( 2009) The significance of hybridization-introgression evolution theory in transgenic escape and its environmental risk assessment and research. Biodiversity Science, 17, 362-377. (in Chinese with English abstract) |
[ 卢宝荣, 夏辉, 杨箫, 金鑫, 刘苹, 汪魏 ( 2009) 杂交-渐渗进化理论在转基因逃逸及其环境风险评价和研究中的意义. 生物多样性, 17, 362-377.] | |
[65] |
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D ( 2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences, USA, 99, 12246-12251.
DOI URL PMID |
[66] | Matos JA, Schaal BA ( 2010) Chloroplast evolution in the Pinus montezumae complex: A coalescent approach to hybridization. Evolution, 54, 1218-1233. |
[67] |
Meirmans PG, Godbout J, Lamothe M, Thompson SL, Isabel N ( 2017) History rather than hybridization determines population structure and adaptation in Populus balsamifera. Journal of Evolutionary Biology, 30, 2044-2058.
DOI URL PMID |
[68] | Meng LH, Yang HL, Wu GL, Wang YJ ( 2008) Study on the pedigree geography of Hippophae rhamnoides L. based on chloroplast DNA trnL-F sequence. Journal of Systematics and Evolution, 46, 32-40. (in Chinese with English abstract) |
[ 孟丽华, 杨慧玲, 吴桂丽, 王玉金 ( 2008) 基于叶绿体DNA trnL-F序列研究肋果沙棘的谱系地理学. 植物分类学报, 46, 32-40.] | |
[69] |
Muir G, Filatov D ( 2007) A selective sweep in the chloroplast DNA of dioecious Silene (section Elisanthe). Genetics, 177, 1239-1247.
DOI URL |
[70] | Nosil P ( 2012) Ecological Speciation. Oxford University Press, Oxford. |
[71] |
Nie ZL, Wen J, Sun H, Bartholomew B ( 2005) Monophyly of Kelloggia torrey ex Benth. (Rubiaceae) and evolution of its intercontinental disjunction between Western North America and Eastern Asia. American Journal of Botany, 92, 642-652.
DOI URL |
[72] |
Palmer JD ( 1985) Comparative organization of chloroplast genomes. Annual Review of Genetics, 19, 325-354.
DOI URL PMID |
[73] |
Palumbi SR, Cipriano F, Hare MP ( 2001) Predicting nuclear gene coalescence from mitochondrial data: The three-times rule. Evolution, 55, 859-868.
DOI URL PMID |
[74] |
Perry AS, Wolfe KH ( 2002) Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. Journal of Molecular Evolution, 55, 501-508.
DOI URL PMID |
[75] |
Porter JM, Johnson LA, Wilke D ( 2010) Phylogenetic systematics of Ipomopsis (Polemoniaceae): Relationships and divergence times estimated from chloroplast and nuclear DNA sequences. Systematic Botany, 35, 181-200.
DOI URL |
[76] |
Provan J, Powell W, Hollingsworth PM ( 2001) Chloroplast microsatellites: New tools for studies in plant ecology and evolution. Trends in Ecology and Evolution, 16, 142-147.
DOI URL PMID |
[77] |
Qiu YX, Fu CX, Comes HP ( 2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
DOI URL |
[78] |
Ramdhani S, Barker NP, Baijnath H ( 2009) Rampant non-monophyly of species in Kniphofia Moench (Asphodelaceae) suggests a recent Afromontane radiation. Taxon, 58, 1141-1152.
DOI URL |
[79] |
Ramdhani S, Barker NP, Cowling RM ( 2011) Revisiting monophyly in Haworthia duval (Asphodelaceae): Incongruence, hybridization and contemporary. Taxon, 60, 1001-1014.
DOI URL |
[80] |
Ramos-Ortiz S, Oyama K, Rodrigue-Correa H, Gonzalez-Rodriguez A ( 2016) Geographic structure of genetic and phenotypic variation in the hybrid zone between Quercus affinis and Q. laurina in Mexico. Plant Species Biology, 31, 219-232.
DOI URL |
[81] |
Renner SS ( 2016) Available data point to a 4-km-high Tibetan Plateau by 40 Ma but 100 molecular-clock papers have linked supposed recent uplift to young node ages. Journal of Biogeography, 43, 1479-1487.
DOI URL |
[82] |
Renoult JP, Kjellberg F, Grout C, Santoni S, Khadari B ( 2009) Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evolutionary Biology, 9, 248.
DOI URL PMID |
[83] |
Rosenberg NA ( 2003) The shapes of neutral gene genealogies in two species: Probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution, 57, 1465-1477.
DOI URL PMID |
[84] | Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA ( 2010) Phylogeographic studies in plants: Problems and prospects. Molecular Ecology, 7, 465-474. |
[85] |
Schonswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C ( 2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution, 42, 92-103.
DOI URL |
[86] |
Slatkin M, Barton NH ( 1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 43, 1349-1368.
DOI URL PMID |
[87] |
Smith JF, Ooi MTY, Clark JL ( 2018) Incipient speciation in a neotropical Gesneriaceae: Columnea kucyniakii is nested within C. strigose. Plant Systematics and Evolution, 304, 511-519.
DOI URL |
[88] | Song MS, Yue JP, Sun H, Li ZM ( 2011) Phylogeographical study on Primula poissonii (Primulaceae) from Hengduan Mountains. Plant Diversity and Resources, 33, 91-100. (in Chinese with English abstract) |
[ 宋敏舒, 乐霁培, 孙航, 李志敏 ( 2011) 横断山地区海仙报春的谱系地理学研究. 植物分类与资源学报, 33, 91-100.] | |
[89] |
Stegemann S, Hartmann S, Ruf S, Bock R ( 2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proceedings of the National Academy of Sciences, USA, 100, 8828-8833.
DOI URL PMID |
[90] |
Strauss SH, Palmer JD, Howe GT, Doerksen AH ( 1988) Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proceedings of the National Academy of Sciences, USA, 85, 3898-3902.
DOI URL PMID |
[91] |
Sun YS, Abbott RJ, Li LL, Li L, Zou JB, Liu JQ ( 2014) Evolutionary history of purple cone spruce (Picea purpurea) in the Qinghai-Tibet Plateau: Homoploid hybrid origin and pleistocene expansion. Molecular Ecology, 23, 343-359.
DOI URL |
[92] | Syring J, Farrell K, Businsky R, Cronn R, Liston A ( 2007) Widespread genealogical nonmonophyly in species Pinus subgenus Strobus. Systematic Botany, 56, 163-181. |
[93] |
Tajima F ( 1983) Evolutionary relationships of DNA sequences in finite populations. Genetics, 105, 437-460.
DOI URL PMID |
[94] |
Templeton AR ( 1998) Nested clade analysis of phylogeographic data: Testing hypotheses about gene flow and population history. Molecular Ecology, 7, 381-397.
DOI URL |
[95] |
Vachon N, Freeland JR ( 2011) Phylogeographic inferences from chloroplast DNA: Quantifying the effects of mutations in repetitive and non-repetitive sequences. Molecular Ecology Resources, 11, 279-285.
DOI URL PMID |
[96] |
Valcarcel V, Fiz O, Vargas P ( 2003) Chloroplast and nuclear evidence for multiple origins of polyploids and diploids of Hedera (Araliaceae) in the Mediterranean basin. Molecular Phylogenetics and Evolution, 27, 1-20.
DOI URL PMID |
[97] |
Wang JL, Gao QB, Fu PC, Gulzar K, Chen SL, Zhang FQ ( 2014) Phylogeography of Spiraea mongolica (Rosaceae) on the Qinghai-Tibetan Plateau and adjacent highlands. Acta Botanica Boreali-Occidentalia Sinica, 34, 1981-1991. (in Chinese with English abstract)
DOI URL |
[ 王久利, 高庆波, 付鹏程, Khan Gulzar, 陈世龙, 张发起 ( 2014) 青藏高原及其毗邻山区蒙古绣线菊谱系地理学研究. 西北植物学报, 34, 1981-1991.]
DOI URL |
|
[98] | Wang M, Zhao HX, Wang L, Wang T, Yang RW, Wang XL, Zhou YH, Ding CB, Zhang L ( 2013) Potential use of DNA barcoding for the identification of Salvia based on cpDNA and nrDNA sequences. Genetics, 528, 206-215. |
[99] |
Wang MN, Qiao Q, Zhang RJ, Hu PW, Yang G, Chen HF ( 2011) Studies on the community feature comparison and phylogeography of relic plant Bretschneidera sinensis in Nankun and Daling Mountains, Guangdong Province. Guihaia, 31, 789-794. (in Chinese with English abstract)
DOI URL |
[ 王美娜, 乔琦, 张荣京, 胡普炜, 杨国, 陈红锋 ( 2011) 广东南昆山与大岭山孑遗植物伯乐树群落特征比较与谱系地理学研究. 广西植物, 31, 789-794.]
DOI URL |
|
[100] |
Wang RJ, Cheng CL, Su TM, Chang CC, Wu CL, Chaw SM ( 2008) Dynamics and evolution of the inverted repeat/large single copy junctions in the chloroplast genomes of monocots. BMC Evolutionary Biology, 8, 36.
DOI URL |
[101] | Wang XX, Yue JP, Sun H, Li ZM ( 2011) Phylogeographical study on Eriophyton wallichii (Labiatae) from alpine scree of Qinghai-Tibetan Plateau. Plant Diversity and Resources, 33, 605-614. (in Chinese with English abstract) |
[ 王晓雄, 乐霁培, 孙航, 李志敏 ( 2011) 青藏高原高山流石滩特有植物绵参的谱系地理学研究. 植物分类与资源学报, 33, 605-614.] | |
[102] |
Wang Y, Hey J ( 2010) Estimating divergence parameters with small samples from a large number of loci. Genetics, 184, 363-379.
DOI URL |
[103] |
Wang Y, Shang H, Gu YF, Wei HJ, Zhao GH, Dai XL, Yan YH ( 2015) A new cryptic hybrid species of Adiantum L. (Pteridaceae) identified by nuclear and chloroplast DNA sequences. Chinese Science Bulletin, 60, 922-932. (in Chinese with English abstract)
DOI URL |
[ 王莹, 商辉, 顾钰峰, 韦宏金, 赵国华, 戴锡玲, 严岳鸿 ( 2015) 用核DNA和叶绿体DNA序列鉴别铁线蕨属Adiantum L. (凤尾蕨科)新的隐性杂交种. 科学通报, 60, 922-932.].
DOI URL |
|
[104] |
Wang YZ, Mao RB, Liu Y, Li JM, Dong Y, Li ZY, Smith JF ( 2011) Phylogenetic reconstruction of Chirita and allies (Gesneriaceae) with taxonomic treatments. Journal of Systematics and Evolution, 49, 50-64.
DOI URL |
[105] | Watano Y, Kanai A, Tani N ( 2004) Genetic structure of hybrid zones between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae) revealed by molecular hybrid index analysis. American Journal of Botany, 9, 65-72. |
[106] |
Wellborn GA, Langerhans RB ( 2015) Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution 5, 176-195.
DOI URL PMID |
[107] |
Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H ( 2014) Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Frontiers in Genetics, 5, 4.
DOI URL PMID |
[108] |
Wolf JB ( 2009) Cytonuclear interactions can favor the evolution of genomic imprinting. Evolution, 63, 1364-1371.
DOI URL |
[109] |
Wolfe KH, Li WH, Sharp PM ( 1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences, USA, 84, 9054-9058.
DOI URL PMID |
[110] | Wright S ( 1969) Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. University Chicago Press, Chicago. |
[111] | Wright S ( 1977) Evolution and the Genetics of Populations. Vol. 3. Experimental Results and Evolutionary Deductions. University Chicago Press, Chicago. |
[112] | Wu ZY, Wu SG ( 1996) A proposal for a new floristic kingdom (realm)—the E. Asiatic kingdom, its delimitation and characteristics. In: Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants (eds Zhang AL, Wu SG), pp. 3-42.Higher Education Press, Beijing & Springer-Verlag, Berlin. |
[113] |
Xing SC, Liu CJ ( 2008) Progress in chloroplast genome analysis. Progress in Biochemistry and Biophysics, 35(1), 1-8. (in Chinese with English abstract)
DOI URL |
[ 邢少辰 , Liu CJ ( 2008) 叶绿体基因组研究进展. 生物化学与生物物理进展, 35(1), 1-8.]
DOI URL |
|
[114] |
Yang YC, Kung TL, Hu CY, Lin SF ( 2015) Development of primer pairs from diverse chloroplast genomes for use in plant phylogenetic research. Genetics and Molecular Research, 14, 14857-14870.
DOI URL PMID |
[115] |
Young ND ( 1996) Concordance and discordance: A tale of two hybrid zones in the Pacific Coast irises (Iridaceae). American Journal of Botany, 83, 1623-1629.
DOI URL |
[116] |
Yu HB, Zhang YL ( 2013) Advances in phylogeography of alpine plants in the Tibetan Plateau and adjacent regions. Acta Botanica Boreali-Occidentalia Sinica, 33, 1268-1278. (in Chinese with English abstract)
DOI URL |
[ 于海彬, 张镱锂 ( 2013) 青藏高原及其周边地区高山植物谱系地理学研究进展. 西北植物学报, 33, 1268-1278.]
DOI URL |
|
[117] |
Zeng YF, Zhang JG, Duan AG, Abuduhamiti B ( 2012) Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility. Scientific Reports, 6, 28043.
DOI URL PMID |
[118] |
Zhang FQ, Gao QB, Duan YZ, Zhang DJ, Chen SL ( 2012) Phylogeography of Spiraea alpine (Rosaceae) in Hengduan Mountain. Guihaia, 32, 617-623. (in Chinese with English abstract)
DOI URL |
[ 张发起, 高庆波, 段义忠, 张得钧, 陈世龙 ( 2012) 横断山区高山绣线菊的谱系地理学研究. 广西植物, 32, 617-623.]
DOI URL |
|
[119] | Zhang T, Li ZZ, Liu YL, Jiang ZW, Huang HW ( 2007) Genetic diversity, gene introgression and homoplasy in sympatric populations of the genus Actinidia as revealed by chloroplast microsatellite markers. Biodiversity Science, 15, 1-22. (in Chinese with English abstract) |
[ 张田, 李作洲, 刘亚令, 姜正旺, 黄宏文 ( 2007) 猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑. 生物多样性, 15, 1-22.] | |
[120] |
Zhang Q, Yang R, Wang Q, Liu JQ ( 2005) Phylogeography of Juniperus przewalskii (Cupressaceae) inferred from the chloroplast DNA trnT-trnF sequence variation. Acta Phytotaxonomica Sinica, 43, 503-512. (in Chinese with English abstract)
DOI URL |
[ 张茜, 杨瑞, 王钦, 刘建全 ( 2005) 基于叶绿体DNA trnT-trnF序列研究祁连圆柏的谱系地理学. 植物分类学报, 43, 503-512.]
DOI URL |
|
[121] |
Zhang X, Shen S, Wu F, Wang Y ( 2017) Inferring genetic variation and demographic history of Michelia yunnanensis Franch. (Magnoliaceae) from chloroplast DNA sequences and microsatellite markers. Frontiers in Plant Sciences, 8, 583.
DOI URL PMID |
[122] |
Zhang XM, Li DZ, Gao LM ( 2012) Phylogeographical study on Taxus wallichiana var. mairei (Lemee & Leveille) L.K.Fu & Nan Li. Acta Botanica Boreali-Occidentalia Sinica, 32, 1983-1989. (in Chinese with English abstract)
DOI URL |
[ 张雪梅, 李德铢, 高连明 ( 2012) 南方红豆杉谱系地理学研究. 西北植物学报, 32, 1983-1989.]
DOI URL |
[1] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[2] | 肖钰, 王茜, 何梓晗, 李玲玲, 胡新生. 基于生物学物种定义探讨物种形成理论与验证的研究进展[J]. 生物多样性, 2022, 30(5): 21480-. |
[3] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[4] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[5] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[6] | 李敏岚, 王超, 王瑞武. 路径依赖下的物种形成机制[J]. 生物多样性, 2021, 29(3): 409-418. |
[7] | 张梦华, 张宪春. 中国薄叶卷柏复合群的物种划分[J]. 生物多样性, 2021, 29(12): 1607-1619. |
[8] | 范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞. 红砂基因组大小变异及物种分化[J]. 生物多样性, 2021, 29(10): 1308-1320. |
[9] | 梁思琪, 张宪春, 卫然. 利用整合分类学方法进行蕨类植物复合体的物种划分: 以线裂铁角蕨复合体为例[J]. 生物多样性, 2019, 27(11): 1205-1220. |
[10] | 郎丹丹, 唐敏, 周欣. 传粉网络构建的定性定量分子研究: 应用与展望[J]. 生物多样性, 2018, 26(5): 445-456. |
[11] | 李霖锋, 刘宝. 表观遗传变异在植物杂交与多倍化过程中的作用[J]. 生物多样性, 2017, 25(6): 600-607. |
[12] | 王玉国. 自然杂交与物种形成[J]. 生物多样性, 2017, 25(6): 565-576. |
[13] | 周秋杰, 蔡亚城, 黄伟伦, 吴伟, 代色平, 王峰, 周仁超. 野牡丹属两个海南特有种与同属广布种自然杂交的分子证据[J]. 生物多样性, 2017, 25(6): 638-646. |
[14] | 邱英雄, 鹿启祥, 张永华, 曹亚男. 东亚第三纪孑遗植物的亲缘地理学: 现状与趋势[J]. 生物多样性, 2017, 25(2): 136-146. |
[15] | 张德兴. 为什么在物种概念上难以达成共识?[J]. 生物多样性, 2016, 24(9): 1009-1013. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn