生物多样性 ›› 2019, Vol. 27 ›› Issue (4): 468-474. DOI: 10.17520/biods.2019002
所属专题: 传粉生物学
• 综述 • 上一篇
收稿日期:
2019-01-03
接受日期:
2019-02-22
出版日期:
2019-04-20
发布日期:
2019-06-05
通讯作者:
张彦文
基金资助:
Wenzhao Hu1, Jimin Zhao1, Yanwen Zhang1,2,*()
Received:
2019-01-03
Accepted:
2019-02-22
Online:
2019-04-20
Published:
2019-06-05
Contact:
Yanwen Zhang
摘要:
由开花受精花(chasmogamous, CH)和闭花受精花(cleistogamous, CL)构成的二态混合交配系统植物有着特殊的繁殖策略, 对其进行深入研究有助于理解植物交配系统的维持机制、进化趋势以及植物对环境变化的应对策略。本文综述了国内外关于CH-CL系统两型花研究的文献资料, 包括非生物因素和生物因素对该繁育系统两型花的生长、发育及相对比例的影响, 两型花的维持机制及进化意义, 阐明了CH-CL系统的研究现状及科学问题, 重点评述了基于近年来对CH-CL系统研究成果的新认识。作者提出, 精确地检测两种花型的后代在异质生境下以及在生活史的不同阶段的适合度差异是十分必要的; 微环境(种子的散布模式及位置效应)对两型花种子萌发和子代生长发育的影响非常重要; 两型花表达的时空差异(即开花模式及对异质生境的敏感性差异)的表达机制可能与内源激素的水平变化相关; 对于多年生具CL系统植物来说, 不同性质、不同来源的后代在居群中的分布式样及对居群遗传结构的影响很可能是该系统维持的重要机制。因此, 深入研究和科学认识二态混合交配系统对认识整个植物界繁育系统的进化有十分重要的意义。
胡文昭, 赵骥民, 张彦文 (2019) 二态混合交配系统的适合度优势及其维持机制研究进展. 生物多样性, 27, 468-474. DOI: 10.17520/biods.2019002.
Wenzhao Hu, Jimin Zhao, Yanwen Zhang (2019) Fitness advantage and maintenance mechanisms of dimorphic mixed- mating plants. Biodiversity Science, 27, 468-474. DOI: 10.17520/biods.2019002.
[1] |
Ansaldi BH, Weber JJ, Franks SJ (2018) The role of phenotypic plasticity and pollination environment in the cleistogamous, mixed mating breeding system of Triodanis perfoliata. Plant Biology, 20, 1068-1074.
DOI URL |
[2] |
Audigeos D, Brousseau L, Traissac S, Scotti-Saintagne C, Scotti I (2013) Molecular divergence in tropical tree populations occupying environmental mosaics. Journal of Evolution Biology, 26, 529-544.
DOI URL |
[3] |
Barnett LL, Troth A, Willis JH (2018) Plastic breeding system response to day length in the California wildflower Mimulus douglasii. American Journal of Botany, 105, 779-787.
DOI URL |
[4] |
Bell TJ, Quinn JA (1987) Effects of soil moisture and light intensity on the chasmogamous and cleistogamous components of reproductive effort of Dichanthelium clandestinum populations. Canadian Journal of Botany, 65, 2243-2249.
DOI URL |
[5] |
Berg H (2003) Factors influencing seed: Ovule ratios and reproductive success in four cleistogamous species: A comparison between two flower types. Plant Biology, 5, 194-202.
DOI URL |
[6] |
Berg H, Redbo-Torstensson P (1998) Cleistogamy as a bet- hedging strategy in Oxalis acetosella, a perennial herb. Journal of Ecology, 86, 491-500.
DOI URL |
[7] |
Berg H, Redbo-Torstensson P (1999) Offspring performance in three cleistogamous Viola species. Plant Ecology, 145, 49-58.
DOI URL |
[8] |
Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155.
DOI URL |
[9] |
Brown WV (1952) The relation of soil moisture to cleistogamy in Stipa leucotricha. Botanical Gazette, 113, 438-444.
DOI URL |
[10] |
Busch JW, Delph LF (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109, 553-562.
DOI URL |
[11] |
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C (2017) Plant hormone signaling in flowering: An epigenetic point of view. Journal of Plant Physiology, 214, 16-27.
DOI URL |
[12] |
Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18, 237-268.
DOI URL |
[13] |
Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nature Reviews Genetics, 10, 783-796.
DOI |
[14] | Chen JB, Somta P, Chen X, Cui XY, Yuan XX, Srinives P (2016) Gene mapping of a Mutant Mungbean (Vigna radiata L.) using new molecular markers suggests a gene encoding a YUC4-like protein regulates the chasmogamous flower trait. Frontiers in Plant Science, 7, 830. |
[15] |
Cheplick GP (2005) Biomass partitioning and reproductive allocation in the invasive, cleistogamous grass Microstegium vimineum: Influence of the light environment. Journal of Torrey Botany Society, 132, 214-224.
DOI URL |
[16] |
Connor HE (1998) Breeding systems in New Zealand grasses XII. Cleistogamy in Festuca. New Zealand Journal of Botany, 36, 471-476.
DOI URL |
[17] |
Conti L (2017) Hormonal control of the floral transition: Can one catch them all? Developmental Biology, 430, 288-301.
DOI URL |
[18] | Culley TM (2000) Inbreeding depression and floral type differences in Viola canadensis (Violaceae), a perennial herb with chasmogamous and cleistogamous flowers. Canadian Journal of Botany, 78, 1420-1429. |
[19] |
Culley TM (2002) Reproductive biology and delayed selfing in Viola pubescens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. International Journal of Plant Science, 163, 113-122.
DOI URL |
[20] |
Culley TM, Klooster MR (2007) The cleistogamous breeding system: A review of its frequency, evolution, and ecology in angiosperms. The Botanical Review, 73, 1-30.
DOI URL |
[21] |
Eckstein RL, Otte A (2005) Effects of cleistogamy and pollen source on seed production and offspring performance in three endangered violets. Basic Applied Ecology, 6, 339-350.
DOI URL |
[22] |
Fisher RA (1941) Average excess and average effect of a gene substitution. Annals of Eugenics, 11, 53-63.
DOI URL |
[23] | Fu QZ (2018) Study on the mechanism of the influence of light on plant growth. Technology and Economic Guide, ( 1), 94.(in Chinese) |
[ 付琪珍 (2018) 光对植物生长影响机理研究. 科技经济导刊, ( 1), 94.] | |
[24] |
Heywood JS, Michalski JS, McCann BK, Russo AD, Andres KJ, Hall AR, Middleton TC (2017) Genetic and environmental integration of the hawkmoth pollination syndrome in Ruellia humilis (Acanthaceae). Annals of Botany, 119, 1143-1155.
DOI URL |
[25] |
Holsinger KE (1986) Dispersal and plant mating systems: The evolution of self-fertilization in subdivided populations. Evolution, 40, 405-413.
DOI URL |
[26] |
Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution, 50, 54-70.
DOI URL |
[27] | Jones NT, Husband BC, MacDougall AS (2013) Reproductive system of a mixed-mating plant responds to climate perturbation by increased selfing. Proceedings of the Royal Society B: Biological Sciences, 280, 1766. |
[28] |
Karron JD, Ivey CT, Mitchell RJ, Whitehead MR, Peakall R, Case AL (2012) New perspectives on the evolution of plant mating systems. Annals of Botany, 109, 493-503.
DOI URL |
[29] |
Kaul V, Koul AK (2009) Sex expression and breeding strategy in Commelina benghalensis. Journal of Biosciences, 34, 977-990.
DOI URL |
[30] |
Kawano S, Hara T, Hiratsuka A, Matsuo K, Hirota I (1990) Reproductive biology of an annual, Polygonum thunbergii (Polygonaceae): Spatio-temporal changes in growth, structure and reproductive components of a population over an environmental gradient. Plant Species Biology, 5, 97-120.
DOI URL |
[31] | Kim I, Carr GD (1990) Reproductive biology and uniform culture of Portulaca in Hawaii. Pacific Science, 44, 123-129. |
[32] |
Koul M, Sharma N (2012) Rates and pattern of ovule abortion vis-à-vis in situ pollen germination in some populations of Trifolium fragiferum L. Journal of Biosciences, 37, 1067-1077.
DOI URL |
[33] |
Li QX, Huo QD, Wang J, Zhao J, Sun K, He CY (2016) Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica. BMC Plant Biology, 16, 151.
DOI URL |
[34] |
Lord EM (1981) Cleistogamy: A tool for the study of floral morphogenesis, function and evolution. The Botany Review, 47, 421-449.
DOI URL |
[35] |
Lu Y (2002) Why is cleistogamy a selected reproductive strategy in Impatiens capensis (Balsaminaceae)? Biological Journal of the Linnean Society, 75, 543-553.
DOI URL |
[36] | Mara CD, Irish VF (2008) Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiology, 47, 707-718. |
[37] |
Masuda M, Yahara T (1994) Reproductive ecology of a cleistogamous annual, Impatiens nolitangere L. occurring under different environmental conditions. Ecological Research, 9, 67-75.
DOI URL |
[38] | Masuda M, Yahara T, Maki M (2001) An ESS model for the mixed production of cleistogamous and chasmogamous flowers in a facultative cleistogamous plant. Evolutionary Ecology Research, 3, 429-439. |
[39] |
Masuda M, Yahara T, Maki M (2004) Evolution of floral dimorphism in a cleistogamous annual, Impatiens nolitangere L. occurring under different environmental conditions. Ecological Research, 19, 571-580.
DOI URL |
[40] | McCall C, Mitchell-Olds T, Waller DM (1989) Fitness consequences of outcrossing in Impatiens capensis: Tests of the frequency-dependent and sib-competition models. Evolution, 43, 1075-1084. |
[41] |
Munguía-Rosas MA, Abdala-Roberts L, Parra-Tabla V (2013a) Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora. Oecologia, 173, 871-880.
DOI URL |
[42] |
Munguía-Rosas MA, Campos-Navarrete MJ, Parra-Tabla V (2013b) The effect of pollen source vs. flower type on progeny performance and seed predation under contrasting light environments in a cleistogamous herb. PLoS ONE, 8, e80934.
DOI URL |
[43] |
Munguía-Rosas MA, Parra-Tabla V, Ollerton J, Cervera JC (2012) Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae). Annals of Botany, 109, 343-350.
DOI URL |
[44] |
Murren CJ, Dudash MR (2012) Variation in inbreeding depression and plasticity across native and non-native field environments. Annals of Botany, 109, 621-632.
DOI URL |
[45] |
Oakley CG, Winn AA (2008) Population-level and family-level inbreeding depression in a cleistogamous perennial. International Journal of Plant Science, 169, 523-530.
DOI URL |
[46] | Parra-Tabla V, Munguía-Rosas M, Campos-Navarrete MJ, Ramos-Zapata JA (2014) Effects of flower dimorphism and light environment on arbuscular mycorrhizal colonisation in a cleistogamous herb. Plant Biology, 17, 163-168. |
[47] |
Redbo-Torstensson P, Berg H (1995) Seasonal cleistogamy: A conditional strategy to provide reproductive assurance. Acta Botanica Neerlandica, 44, 247-256.
DOI URL |
[48] | Schmitt J, Gamble SE (1990) The effect of distance from the parental site on offspring performance and inbreeding depression in Impatiens capensis: A test of the local adaptation hypothesis. Evolution, 44, 2022-2030. |
[49] |
Shu K, Luo X, Meng Y, Yang W (2018) Toward a molecular understanding of abscisic acid actions in floral transition. Plant and Cell Physiology, 59, 215-221.
DOI URL |
[50] |
Stojanova B, Maurice S, Cheptou PO (2016) Is plasticity across seasons adaptive in the annual cleistogamous plant Lamium amplexicaule? Annals of Botany, 117, 681-691.
DOI URL |
[51] |
Uphof JC (1938) Cleistogamic flowers. Botanical Review, 4, 21-49.
DOI URL |
[52] |
Waller DM (1984) Differences in fitness between seedlings derived from cleistogamous and chasmogamous flowers in Impatiens capensis. Evolution, 38, 427-440.
DOI URL |
[53] |
Wang CH, Du W, Wang XF (2017) Reproductive investment in a cleistogamous morph of Polygonum jucundum (Polygonaceae). Plant Systematics and Evolution, 303, 559-563.
DOI URL |
[54] |
Wang Y, Ballard HE, McNally RR, Wyatt SE (2013) Gibberellins are involved but not sufficient to trigger a shift between chasmogamous-cleistogamous flower types in Viola pubescens. Journal of the Torrey Botanical Society, 140, 1-8.
DOI URL |
[55] | Wang Y, Li QX, Sun K, Chen W (2017) The study on dimorphic flower development and the soluble sugar and starch content in Viola philippica. Acta Horticulturae Sinica, (in Chinese with English abstract) 44, 323-329. |
[ 王镛, 李巧峡, 孙坤, 陈纹 (2017) 紫花地丁开放花与闭锁花的发育及可溶性糖与淀粉含量的研究. 园艺学报, 44, 323-329.] | |
[56] |
Wilken DH (1982) The balance between chasmogamy and cleistogamy in Collomia grandiflora (Polemoniaceae). American Journal of Botany, 69, 1326-1333.
DOI URL |
[57] |
Winn AA, Moriuchi KS (2009) The maintenance of mixed mating by cleistogamy in the perennial violet Viola septemloba (Violaceae). American Journal of Botany, 96, 2074-2079.
DOI URL |
[58] |
Zhang LH, Sun Q, Zhao JM, Zhang YW (2018) Plasticity in the reproductive strategy of a clonal cleistogamous species, Pseudostellaria heterophylla. Plant Ecology, 219, 1493-1502.
DOI |
[59] | Zhang XZ, Guo BJ, Lan GF, Li HT, Lin SH, Ma J, Lv C, Xu RG (2016) A major QTL, which is co-located with, and two minor QTLs are associated with glume opening angle in barley (Hordeum vulgare L.). Frontiers in Plant Science, 7, 1585. |
[1] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[2] | 肖钰, 王茜, 何梓晗, 李玲玲, 胡新生. 基于生物学物种定义探讨物种形成理论与验证的研究进展[J]. 生物多样性, 2022, 30(5): 21480-. |
[3] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[4] | 胡正艳, 郑全晶, 母其勇, 杜志强, 刘琳, 星耀武, 韩廷申. 不同纬度高蔊菜的交配系统和繁殖保障[J]. 生物多样性, 2021, 29(6): 712-721. |
[5] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
[6] | 路宁娜, 刘振恒, 马妍, 路广梅, 孟秀祥. 展毛翠雀的花性状表型选择[J]. 生物多样性, 2019, 27(7): 772-777. |
[7] | 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[8] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[9] | 储诚进, 王酉石, 刘宇, 蒋林, 何芳良. 物种共存理论研究进展[J]. 生物多样性, 2017, 25(4): 345-354. |
[10] | 王霞, 王静, 蒋敬虎, 康明. 观光木片断化居群的遗传多样性和交配系统[J]. 生物多样性, 2012, 20(6): 676-684. |
[11] | 张婵, 查绍琴, 杨永平, 段元文. 蓝翠雀花退化雄蕊上的黄色髯毛对其繁殖成功的影响[J]. 生物多样性, 2012, 20(3): 348-353. |
[12] | 刘乐乐, 刘左军, 杜国祯, 赵志刚. 毛茛状金莲花不同花期的花特征和访花昆虫的变化及表型选择[J]. 生物多样性, 2012, 20(3): 317-323. |
[13] | 卢宝荣, 夏辉, 汪魏, 杨箫. 天然杂交与遗传渐渗对植物入侵性的影响[J]. 生物多样性, 2010, 18(6): 577-589. |
[14] | 卢宝荣, 夏辉, 杨箫, 金鑫, 刘苹, 汪魏. 杂交–渐渗进化理论在转基因逃逸及其环境风险评价和研究中的意义[J]. 生物多样性, 2009, 17(4): 362-377. |
[15] | 黄磊, 王义权. 微卫星分子标记在濒危动物保护遗传学研究中的应用[J]. 生物多样性, 2004, 12(5): 528-533. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn