生物多样性 ›› 2022, Vol. 30 ›› Issue (2): 21419. DOI: 10.17520/biods.2021419
所属专题: 物种形成与系统进化
王寅1,2, 王健铭1,2, 曲梦君1,2, 李景文1,2,*()
收稿日期:
2021-10-21
接受日期:
2021-11-18
出版日期:
2022-02-20
发布日期:
2022-02-28
通讯作者:
李景文
基金资助:
Yin Wang1,2, Jianming Wang1,2, Mengjun Qu1,2, Jingwen Li1,2,*()
Received:
2021-10-21
Accepted:
2021-11-18
Online:
2022-02-20
Published:
2022-02-28
Contact:
Jingwen Li
About author:
*E-mail: Lijingwenhy@bjfu.edu.cn摘要:
作为干旱内陆河流域水资源可利用性的决定性因素之一, 地下水位在调节植物功能性状、系统发育乃至植物群落构建方面发挥着至关重要的作用。然而地下水位变化对干旱内陆河流域植物群落构建过程相对重要性的影响, 以及这种影响在地上-地下组分间的差异尚未得到系统研究。本文以典型干旱内陆河流域下游的主要植物群落为研究对象, 结合叶片、根系功能性状与环境数据, 系统地探讨植物群落构建过程沿地下水位梯度的变化模式及其关键驱动因素。结果表明: (1)综合植物个体、平均功能性状和系统发育可知, 在整个研究区域, 叶片、根系功能多样性的标准效应值(SES.RaoQ)均小于0。大多数植物群落的功能结构(90%的功能性状)表现为聚集状态。(2)地下水与土壤因子共同解释叶片、根系SES.RaoQ 13%-39%与14%-48%的变异, 而地下水位能够单独解释叶片、根系SES.RaoQ 13%-22%与14%-36%的变异。(3)叶片、根系SES.RaoQ均随平均地下水位的降低而降低, 随地下水位季节性的增加而增加; 根系SES.RaoQ与地下水位的斜率大于叶片SES.RaoQ。总体而言, 干旱内陆河流域植物群落的构建机制整体上由确定性过程主导, 支持生态位理论, 大多数植物群落的构建机制符合生态位理论中的环境筛选作用。地下水位是调控不同群落构建过程相对重要性的主要因素, 随地下水位的降低, 功能结构由发散状态转为聚集状态。植物群落地上、地下功能结构沿地下水位梯度的变化表现出一致性, 但植物群落地下部分对地下水位的变化更为敏感。
王寅, 王健铭, 曲梦君, 李景文 (2022) 干旱内陆河流域植物群落构建过程及其关键驱动因素. 生物多样性, 30, 21419. DOI: 10.17520/biods.2021419.
Yin Wang, Jianming Wang, Mengjun Qu, Jingwen Li (2022) Plant community assembly processes and key drivers in an arid inland river basin. Biodiversity Science, 30, 21419. DOI: 10.17520/biods.2021419.
采样点 Site | 植被类型 Vegetation type (中国科学院中国植被图编辑委员会, | 物种丰富度 Species richness | 平均(范围)地下水位 Mean (Range) groundwater depth (m) | 与河道的距离 Distance from the river channel (m) | 海拔 Altitude (m) |
---|---|---|---|---|---|
1 | 胡杨疏林 Populus euphratica woodland | 8.4 ± 1.8 | 1.30 (0.38-1.70) | 32 | 959 |
2 | 7.8 ± 0.9 | 1.78 (1.43-2.16) | 47 | 1,010 | |
3 | 7.9 ± 1.4 | 1.80 (1.52-2.00) | 99 | 939 | |
4 | 4.4 ± 1.7 | 1.96 (1.76-2.23) | 104 | 915 | |
5 | 2.6 ± 0.7 | 2.30 (2.17-2.48) | 230 | 1,064 | |
6 | 多枝柽柳灌丛 Tamarix ramosissima scrub | 6.2 ± 1.5 | 2.12 (1.77-2.38) | 643 | 907 |
7 | 2.4 ± 0.7 | 2.93 (2.37-3.23) | 1,698 | 951 | |
8 | 2.8 ± 0.6 | 4.75 (4.39-4.97) | 2,821 | 914 | |
9 | 2.8 ± 1.2 | 5.04 (4.92-5.31) | 3,397 | 903 | |
10 | 3.9 ± 0.9 | 3.81 (3.71-3.92) | 3,249 | 945 | |
11 | 3.9 ± 0.7 | 2.53 (2.32-2.62) | 831 | 946 | |
12 | 膜果麻黄荒漠 Ephedra przewalskii desert | 7.0 ± 0.8 | 2.70 (2.48-2.96) | 641 | 1,027 |
13 | 5.2 ± 0.6 | 3.15 (3.09-3.21) | 3,610 | 1,012 | |
14 | 2.6 ± 0.7 | 3.54 (3.43-3.59) | 1,941 | 945 | |
15 | 霸王荒漠 Zygophyllum xanthoxylon desert | 6.1 ± 1.0 | 3.12 (2.93-3.22) | 912 | 976 |
16 | 4.9 ± 0.9 | 3.92 (3.47-4.13) | 2,562 | 1,032 | |
17 | 泡泡刺荒漠 Nitraria sphaerocarpa desert | 4.1 ± 1.4 | 4.21 (4.18-4.24) | 4,288 | 993 |
18 | 2.9 ± 0.7 | 6.68 (6.66-6.70) | 5,745 | 976 | |
19 | 3.4 ± 0.7 | 6.24 (6.21-6.26) | 4,842 | 932 | |
20 | 沙拐枣荒漠 Calligonum mongolicum desert | 3.2 ± 0.4 | 4.00 (3.78-4.18) | 4,285 | 1,027 |
21 | 小果白刺荒漠 Nitraria sibirica desert | 3.4 ± 0.8 | 5.45 (5.27-5.68) | 4,029 | 960 |
22 | 红砂荒漠 Reaumuria soongorica desert | 6.0 ± 1.7 | 2.68 (2.48-2.85) | 1,867 | 1,009 |
23 | 6.2 ± 1.2 | 2.85 (2.43-3.01) | 649 | 980 | |
24 | 2.6 ± 0.7 | 3.39 (2.65-3.91) | 2,098 | 926 | |
25 | 2.8 ± 0.8 | 3.79 (3.64-3.98) | 4,300 | 928 | |
26 | 沙蒿荒漠 Artemisia salsoloides desert | 4.3 ± 1.2 | 2.77 (2.61-2.91) | 2,097 | 937 |
27 | 6.1 ± 2.0 | 2.78 (2.35-2.93) | 1,429 | 985 |
表1 研究区植物群落与植被类型
Table 1 Information on plant community and vegetation types in our study region
采样点 Site | 植被类型 Vegetation type (中国科学院中国植被图编辑委员会, | 物种丰富度 Species richness | 平均(范围)地下水位 Mean (Range) groundwater depth (m) | 与河道的距离 Distance from the river channel (m) | 海拔 Altitude (m) |
---|---|---|---|---|---|
1 | 胡杨疏林 Populus euphratica woodland | 8.4 ± 1.8 | 1.30 (0.38-1.70) | 32 | 959 |
2 | 7.8 ± 0.9 | 1.78 (1.43-2.16) | 47 | 1,010 | |
3 | 7.9 ± 1.4 | 1.80 (1.52-2.00) | 99 | 939 | |
4 | 4.4 ± 1.7 | 1.96 (1.76-2.23) | 104 | 915 | |
5 | 2.6 ± 0.7 | 2.30 (2.17-2.48) | 230 | 1,064 | |
6 | 多枝柽柳灌丛 Tamarix ramosissima scrub | 6.2 ± 1.5 | 2.12 (1.77-2.38) | 643 | 907 |
7 | 2.4 ± 0.7 | 2.93 (2.37-3.23) | 1,698 | 951 | |
8 | 2.8 ± 0.6 | 4.75 (4.39-4.97) | 2,821 | 914 | |
9 | 2.8 ± 1.2 | 5.04 (4.92-5.31) | 3,397 | 903 | |
10 | 3.9 ± 0.9 | 3.81 (3.71-3.92) | 3,249 | 945 | |
11 | 3.9 ± 0.7 | 2.53 (2.32-2.62) | 831 | 946 | |
12 | 膜果麻黄荒漠 Ephedra przewalskii desert | 7.0 ± 0.8 | 2.70 (2.48-2.96) | 641 | 1,027 |
13 | 5.2 ± 0.6 | 3.15 (3.09-3.21) | 3,610 | 1,012 | |
14 | 2.6 ± 0.7 | 3.54 (3.43-3.59) | 1,941 | 945 | |
15 | 霸王荒漠 Zygophyllum xanthoxylon desert | 6.1 ± 1.0 | 3.12 (2.93-3.22) | 912 | 976 |
16 | 4.9 ± 0.9 | 3.92 (3.47-4.13) | 2,562 | 1,032 | |
17 | 泡泡刺荒漠 Nitraria sphaerocarpa desert | 4.1 ± 1.4 | 4.21 (4.18-4.24) | 4,288 | 993 |
18 | 2.9 ± 0.7 | 6.68 (6.66-6.70) | 5,745 | 976 | |
19 | 3.4 ± 0.7 | 6.24 (6.21-6.26) | 4,842 | 932 | |
20 | 沙拐枣荒漠 Calligonum mongolicum desert | 3.2 ± 0.4 | 4.00 (3.78-4.18) | 4,285 | 1,027 |
21 | 小果白刺荒漠 Nitraria sibirica desert | 3.4 ± 0.8 | 5.45 (5.27-5.68) | 4,029 | 960 |
22 | 红砂荒漠 Reaumuria soongorica desert | 6.0 ± 1.7 | 2.68 (2.48-2.85) | 1,867 | 1,009 |
23 | 6.2 ± 1.2 | 2.85 (2.43-3.01) | 649 | 980 | |
24 | 2.6 ± 0.7 | 3.39 (2.65-3.91) | 2,098 | 926 | |
25 | 2.8 ± 0.8 | 3.79 (3.64-3.98) | 4,300 | 928 | |
26 | 沙蒿荒漠 Artemisia salsoloides desert | 4.3 ± 1.2 | 2.77 (2.61-2.91) | 2,097 | 937 |
27 | 6.1 ± 2.0 | 2.78 (2.35-2.93) | 1,429 | 985 |
图1 研究区的地理位置。(a)黑河流域和主要地形特征; (b)植物群落野外采样点。
Fig. 1 Geographic locations of study regions. (a) Heihe River basin and its main topographic features; (b) Distribution map of field survey sites.
图2 干旱内陆河流域植物群落的功能结构。基于Rao二次熵指数的标准效应值(SES.RaoQ)的平均值 ± 95%置信区间表征功能结构。*代表SES.RaoQ的均值与0之间的差异显著, NS代表差异不显著。
Fig. 2 Functional structure in all plant communities across arid inland river basin. Functional structure evaluated based on the mean ± 95% confidence intervals of standardized effect size of Rao’s quadratic entropy (SES.RaoQ). * Significant differences between mean of SES.RaoQ and 0 at P < 0.05; NS, Not significant. LPC, Leaf phosphorus concentration; LNC, Leaf nitrogen concentration; LA, Leaf area; SLA, Specific leaf area; RPC, Root phosphorus concentration; RNC, Root nitrogen concentration; RL, Root length; SRL, Specific root length.
图3 黑河流域所有植物群落中功能或系统发育聚集和发散的植物群落的比例。(a)基于单一植物群落中物种性状值; (b)基于所有植物群落中物种平均性状值。灰色实线表示群落比例为50%。缩写含义同图2。
Fig. 3 The proportion of functional or phylogenetic clustering and overdispersion in all plant communities across Heihe River basin. (a) Species trait values within each community; (b) Mean trait values across all plant communities. The gray line indicates the 50% of community. The full names of abbreviations are the same as in Fig.2.
功能性状 Functional trait | Blomberg’s K | P |
---|---|---|
叶氮含量 Leaf nitrogen concentration (LNC) | 0.040 | 0.924 |
叶磷含量 Leaf phosphorus concentration (LPC) | 0.124 | 0.357 |
比叶面积 Specific leaf area (SLA) | 0.084 | 0.630 |
叶面积 Leaf area (LA) | 0.110 | 0.431 |
根氮含量 Root nitrogen concentration (RNC) | 0.177 | 0.110 |
根磷含量 Root phosphorus concentration (RPC) | 0.056 | 0.846 |
比根长 Specific root length (SRL) | 0.210 | 0.059 |
根长 Root length (RL) | 0.199 | 0.060 |
表2 植物功能性状的系统发育信号
Table 2 Phylogenetic signal of plant functional traits
功能性状 Functional trait | Blomberg’s K | P |
---|---|---|
叶氮含量 Leaf nitrogen concentration (LNC) | 0.040 | 0.924 |
叶磷含量 Leaf phosphorus concentration (LPC) | 0.124 | 0.357 |
比叶面积 Specific leaf area (SLA) | 0.084 | 0.630 |
叶面积 Leaf area (LA) | 0.110 | 0.431 |
根氮含量 Root nitrogen concentration (RNC) | 0.177 | 0.110 |
根磷含量 Root phosphorus concentration (RPC) | 0.056 | 0.846 |
比根长 Specific root length (SRL) | 0.210 | 0.059 |
根长 Root length (RL) | 0.199 | 0.060 |
图4 地下水位和土壤变量对Rao二次熵指数的标准效应值(SES.RaoQ)的解释。柱状图为各环境变量对SES.RaoQ的相对贡献量, 总解释率为R2。左侧图为各因子的效应估计值与95%置信区间。图中灰色表示土壤变量; 黑色表示地下水位。MGWD: 平均地下水位; SDGWD: 地下水位季节性; SEC: 土壤电导率; SOC: 土壤有机质; SAN: 土壤有效氮; SAP: 土壤有效磷; SM: 土壤水分。其余缩写含义同图2。
Fig. 4 Relative contribution of groundwater depth and soil variables for standard effect size of Rao’s quadratic entropy (SES.RaoQ). The independent contribution of each variable, expressed as the percentage of explained variance, is shown in each bar chart. Variance explained refers to the R2. Figures on the left show the parameter estimates (standardized coefficients) and the associated 95% confidence interval. Gray color represents for soil variables; Black color represents for groundwater depth. MGWD, Mean groundwater depth; SDGWD, Groundwater depth seasonality; SEC, Soil electric conductivity; SOC, Soil organic matter; SAN, Soil available nitrogen; SAP, Soil available phosphorus; SM, Soil moisture. The full names of abbreviations are the same as in Fig.2.
图5 Rao二次熵指数的标准效应值(SES.RaoQ) (平均值 ± 95%置信区间)沿平均地下水位(a)与地下水位季节性(b)梯度的变化规律。R为相关系数。***表示P < 0.001, NS表示不显著。缩写含义同图2。
Fig. 5 Change in standard effect size of Rao’s quadratic entropy (SES.RaoQ) (mean ± 95% confidence interval) along the gradients of mean groundwater depth (a) and groundwater depth seasonality (b). R is correlation coefficients. *** P < 0.001; NS, not significant. The full names of abbreviations are the same as in Fig.2.
图6 Rao二次熵指数的标准效应值(SES.RaoQ)沿平均地下水位梯度的变化规律。正值(蓝色点)表示功能结构发散, 负值(红色点)表示功能结构聚集。具体缩写含义同图2。
Fig. 6 Variations in standard effect size of Rao’s quadratic entropy (SES.RaoQ) along the mean groundwater depth gradient. Positive values (blue points) indicate functional overdispersion, while negative values (red points) indicate functional clustering. The meanings of abbreviations are the same as in Fig.2.
[1] |
Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJB (2013) Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306.
DOI URL |
[2] | Bañares-De-dios G, Macía MJ, Granzow-de la Cerda Í, Arnelas I, de Carvalho G, Espinosa CI, Salinas N, Swenson NG, Cayuela L (2020) Linking patterns and processes of tree community assembly across spatial scales in tropical montane forests. Ecology, 101, e03058. |
[3] |
Blanchard G, Munoz F, Ibanez T, Hequet V, Vandrot H, Girardi J, Birnbaum P (2019) Regional rainfall and local topography jointly drive tree community assembly in lowland tropical forests of New Caledonia. Journal of Vegetation Science, 30, 845-856.
DOI |
[4] |
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution; International Journal of Organic Evolution, 57, 717-745.
DOI URL |
[5] |
Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533-540.
DOI URL |
[6] |
Botta-Dukát Z, Czúcz B (2016) Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution, 7, 114-126.
DOI URL |
[7] | Burnham KP, Anderson DR (2003) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York. |
[8] |
Butterfield BJ, Bradford JB, Munson SM, Gremer JR (2017) Aridity increases below-ground niche breadth in grass communities. Plant Ecology, 218, 385-394.
DOI URL |
[9] |
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
DOI PMID |
[10] |
Che YD, Liu MX, Li LR, Jiao J, Xiao W (2017) Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny. Chinese Journal of Plant Ecology, 41, 1157-1167. (in Chinese with English abstract)
DOI URL |
[ 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫 (2017) 基于功能性状及系统发育的亚高寒草甸群落构建. 植物生态学报, 41, 1157-1167.]
DOI |
|
[11] |
Chen GG, Yue DX, Zhou YY, Wang D, Wang H, Hui C, Guo JJ (2021) Driving factors of community-level plant functional traits and species distributions in the desert-wetland ecosystem of the Shule River Basin, China. Land Degradation & Development, 32, 323-337.
DOI URL |
[12] |
Chen YN, Li WH, Xu CC, Ye ZX, Chen YP (2015) Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environmental Earth Sciences, 73, 547-558.
DOI URL |
[13] |
Chen YN, Pang ZH, Chen YP, Li WH, Xu CC, Hao XM, Huang X, Huang TM, Ye ZX (2008) Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeology Journal, 16, 1371-1379.
DOI URL |
[14] |
Chen YN, Zilliacus H, Li WH, Zhang HF, Chen YP (2006) Ground-water level affects plant species diversity along the lower reaches of the Tarim River, Western China. Journal of Arid Environments, 66, 231-246.
DOI URL |
[15] |
Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH (2014) Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography, 37, 814-826.
DOI URL |
[16] |
Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
DOI URL |
[17] |
Ding Y, Zang RG, Lu XH, Huang JH, Xu Y (2019) The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. Journal of Vegetation Science, 30, 973-983.
DOI |
[18] |
Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015) Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124.
DOI PMID |
[19] | Franzke CLE, Barbosa S, Blender R, Fredriksen HB, Laepple T, Lambert F, Nilsen T, Rypdal K, Rypdal M, Scotto MG, Vannitsem S, Watkins NW, Yang LC, Yuan NM (2020) The structure of climate variability across scales. Reviews of Geophysics, 58, 4172-4183. |
[20] | Gong ZT (2014) Chinese Soil Geography. Science Press, Beijing. (in Chinese) |
[ 龚子同 (2014) 中国土壤地理. 科学出版社, 北京.] | |
[21] |
Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F (2016) Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. Journal of Vegetation Science, 27, 1275-1287.
DOI URL |
[22] |
Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857-871.
DOI URL |
[23] | Hao XM, Chen YN, Li WH, Guo B, Zhao RF (2009) Evidence and ecological effects of hydraulic lift in Populus euphratica. Chinese Journal of Plant Ecology, 33, 1125-1131. (in Chinese with English abstract) |
[ 郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋 (2009) 胡杨根系水力提升作用的证据及其生态学意义. 植物生态学报, 33, 1125-1131.]
DOI |
|
[24] | Hao XM, Li WH, Huang X, Zhu CG, Ma JX (2009) Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrological Processes, 24, 178-186. |
[25] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI URL |
[26] |
Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422.
DOI URL |
[27] |
Lamontagne S, Cook PG, O’Grady A, Eamus D (2005) Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology, 310, 280-293.
DOI URL |
[28] |
Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
DOI URL |
[29] |
Le Bagousse-Pinguet Y, Gross N, Maestre FT, Maire V, Bello F, Fonseca CR, Kattge J, Valencia E, Leps J, Liancourt P (2017) Testing the environmental filtering concept in global drylands. Journal of Ecology, 105, 1058-1069.
DOI PMID |
[30] |
Lhotsky B, Kovács B, Ónodi G, Csecserits A, Rédei T, Lengyel A, Kertész M, Botta-Dukát Z (2016) Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. Journal of Ecology, 104, 507-517.
DOI URL |
[31] |
Li YC, Chen YS, Sandanov D, Luo A, Lü T, Su XY, Liu YP, Wang QG, Chepinoga V, Dudov S, Wang W, Wang ZH (2021) Patterns and environmental drivers of Ranunculaceae species richness and phylogenetic diversity across eastern Eurasia. Biodiversity Science, 29, 561-574. (in Chinese with English abstract)
DOI URL |
[ 李亦超, 陈永生, Sandanov D, 罗奥, 吕童, 苏香燕, 刘云鹏, 王庆刚, Chepinoga V, Dudov S, 王伟, 王志恒 (2021) 欧亚大陆东部毛茛科植物多样性格局及主导因子. 生物多样性, 29, 561-574.] | |
[32] |
Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL (2015) Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
DOI URL |
[33] |
Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188, 543-553.
DOI URL |
[34] |
Liu XJ, Ma KP (2015) Plant functional traits-Concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339. (in Chinese with English abstract)
DOI URL |
[ 刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[35] |
Luo WQ, Lan RX, Chen DX, Zhang BW, Xi NX, Li YZ, Fang SQ, Valverde-Barrantes OJ, Eissenstat DM, Chu CJ, Wang YS (2021) Limiting similarity shapes the functional and phylogenetic structure of root neighborhoods in a subtropical forest. New Phytologist, 229, 1078-1090.
DOI URL |
[36] |
Luo YH, Cadotte MW, Burgess KS, Liu J, Tan SL, Zou JY, Xu K, Li DZ, Gao LM (2019) Greater than the sum of the parts: How the species composition in different forest strata influence ecosystem function. Ecology Letters, 22, 1449-1461.
DOI URL |
[37] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[38] |
Murphy SJ, Salpeter K, Comita LS (2016) Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology, 97, 2074-2084.
DOI URL |
[39] |
Muscarella R, Uriarte M, Erickson DL, Swenson NG, Kress WJ, Zimmerman JK (2016) Variation of tropical forest assembly processes across regional environmental gradients. Perspectives in Plant Ecology, Evolution and Systematics, 23, 52-62.
DOI URL |
[40] |
Qian H, Jin Y (2016) An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233-239.
DOI URL |
[41] |
Ramm T, Cantalapiedra JL, Wagner P, Penner J, Rödel M, Müller J (2018) Divergent trends in functional and phylogenetic structure in reptile communities across Africa. Nature Communications, 9, 4697.
DOI URL |
[42] |
Rao CR (1982) Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24-43.
DOI URL |
[43] |
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675.
PMID |
[44] |
Schöb C, Armas C, Guler M, Prieto I, Pugnaire FI (2013) Variability in functional traits mediates plant interactions along stress gradients. Journal of Ecology, 101, 753-762.
DOI URL |
[45] | Swenson NG (2014) Functional and Phylogenetic Ecology in R. Springer, New York. |
[46] |
Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170.
PMID |
[47] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2007) Vegetation Map of the People’s Republic of China (1:1000000). Geological Publishing House, Beijing. (in Chinese) |
[ 中国科学院中国植被图编辑委员会 (2007) 中华人民共和国植被图(1:1000000). 地质出版社, 北京.] | |
[48] |
Wang JM, Chen C, Li JW, Feng YM, Lu Q (2019) Different ecological processes determined the alpha and beta components of taxonomic, functional, and phylogenetic diversity for plant communities in dryland regions of Northwest China. PeerJ, 6, e6220.
DOI URL |
[49] | Wang P, Yu JJ, Min LL, Xu YL, Zhu BQ, Zhang YC, Du CY (2014) Shallow groundwater regime and its driving forces in the Ejina Oasis. Quaternary Sciences, 34, 982-993. (in Chinese with English abstract) |
[ 王平, 于静洁, 闵雷雷, 徐永亮, 朱秉启, 张一驰, 杜朝阳 (2014) 额济纳绿洲浅层地下水动态监测研究及其进展. 第四纪研究, 34, 982-993.] | |
[50] |
Wang X, Song NP, Yang XG, Chen L, Qu WJ, Wang L (2021a) Inferring community assembly mechanisms from functional and phylogenetic diversity: The relative contribution of environmental filtering decreases along a sand desertification gradient in a desert steppe community. Land Degradation & Development, 32, 2360-2370.
DOI URL |
[51] |
Wang Y, Wang JM, Wang XL, He YC, Li GJ, Li JW (2021b) Dominant roles but distinct effects of groundwater depth on regulating leaf and fine-root N, P and N:P ratios of plant communities. Journal of Plant Ecology, 14, 1158-1174.
DOI URL |
[52] |
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
DOI URL |
[53] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[54] | Yan RY, Lou AR (2019) Phylogenetic structure of shrub community in Alxa Desert and its environmental determinants. Acta Botanica Boreali-Occidentalia Sinica, 39, 2072-2081. (in Chinese with English abstract) |
[ 闫瑞亚, 娄安如 (2019) 阿拉善荒漠灌丛群落谱系结构及其影响因子. 西北植物学报, 39, 2072-2081.] | |
[55] | Yang YH, Chen YN, Li WH (2008) Soil properties and their impacts on changes in species diversity in the lower reaches of Tarim River, Xinjiang, China. Acta Ecologica Sinica, 28, 602-611. (in Chinese with English abstract) |
[ 杨玉海, 陈亚宁, 李卫红 (2008) 新疆塔里木河下游土壤特性及其对物种多样性的影响. 生态学报, 28, 602-611.] | |
[56] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
DOI URL |
[57] |
Zeng Y, Zhao CY, Li J, Li Y, Lü G, Liu T (2019) Effect of groundwater depth on riparian plant diversity along riverside-desert gradients in the Tarim River. Journal of Plant Ecology, 12, 564-573.
DOI URL |
[58] |
Zhao LJ, Xie C, Liu XH, Wang NL, Yu Z, Dong XY, Wang LX (2020) Water sources of major plant species along a strong climatic gradient in the inland Heihe River Basin. Plant and Soil, 455, 439-466.
DOI URL |
[59] |
Zhu JT, Yu JJ, Wang P, Wang ZY (2011) Quantitative classification and analysis of relationships between plant communities and their groundwater environment in the Ejina Desert Oasis of China. Chinese Journal of Plant Ecology, 35, 480-489. (in Chinese with English abstract)
DOI URL |
[ 朱军涛, 于静洁, 王平, 王志勇 (2011) 额济纳荒漠绿洲植物群落的数量分类及其与地下水环境的关系分析. 植物生态学报, 35, 480-489.]
DOI |
|
[60] |
Zhu JT, Yu JJ, Wang P, Yu Q, Eamus D (2014) Variability in groundwater depth and composition and their impacts on vegetation succession in the lower Heihe River Basin, north-western China. Marine and Freshwater Research, 65, 206-217.
DOI URL |
[61] | Zhu RQ, Liu ML, Li G, Kang HM, Yang T, Wang ZY (2020) Responses of leaf functional traits of Reaumuria soongorica in two different desert habitats. Journal of Northwest Forestry University, 35(5), 29-34. (in Chinese with English abstract) |
[ 朱瑞清, 刘美玲, 李刚, 康红梅, 杨涛, 王治业 (2020) 2种水分生境下红砂叶片功能性状的响应及适应机制. 西北林学院学报, 35(5), 29-34.] |
[1] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[2] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[3] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[4] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[5] | 吴浩, 余玉蓉, 王佳钰, 赵媛博, 高娅菲, 李小玲, 卜贵军, 薛丹, 吴林. 低水位增加灌木多样性和生物量但降低土壤有机碳含量: 以鄂西南贫营养泥炭地为例[J]. 生物多样性, 2023, 31(3): 22600-. |
[6] | 杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明. 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响[J]. 生物多样性, 2023, 31(2): 22492-. |
[7] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[8] | 董建宇, 孙昕, 詹启鹏, 张宇洋, 张秀梅. 莱州湾东岸潮下带大型底栖动物群落beta多样性格局及其驱动因素[J]. 生物多样性, 2022, 30(3): 21388-. |
[9] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[10] | 米湘成, 王绪高, 沈国春, 刘徐兵, 宋晓阳, 乔秀娟, 冯刚, 杨洁, 毛子昆, 徐学红, 马克平. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望[J]. 生物多样性, 2022, 30(10): 22504-. |
[11] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[12] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[13] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[14] | 欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6): 746-758. |
[15] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn