生物多样性 ›› 2020, Vol. 28 ›› Issue (11): 1333-1344. DOI: 10.17520/biods.2020217
收稿日期:
2020-08-14
接受日期:
2020-09-15
出版日期:
2020-11-20
发布日期:
2020-09-30
通讯作者:
储诚进
作者简介:
* E-mail: chuchjin@mail.sysu.edu.cn基金资助:
Yuanzhi Li, Junli Xiao, Hanlun Liu, Youshi Wang, Chengjin Chu*()
Received:
2020-08-14
Accepted:
2020-09-15
Online:
2020-11-20
Published:
2020-09-30
Contact:
Chengjin Chu
摘要:
生物间的相互作用是物种共存和生物多样性维持的关键。传统的物种共存研究主要关注配对物种之间的直接相互作用, 而忽略了更为复杂的间接相互作用。本文首先介绍了两种间接相互作用: 链式相互作用(本质上仍是两两物种之间的相互作用)和高阶相互作用。在此基础上, 我们回顾了高阶相互作用定义的演变历史(包括狭义的高阶相互作用和广义的高阶相互作用)及其检验方法, 并介绍了高阶相互作用在多营养级之间和同一营养级内的研究概况。目前, 生态学家主要对多营养级之间(如食物网)的高阶相互作用的特征、发生机制、作用途径及实验证据等方面进行了详尽的研究。近年来, 同一营养级内的高阶相互作用也开始受到关注, 因此我们进一步介绍了同一营养级内个体水平高阶相互作用的重要意义和度量方法。从个体水平上研究高阶相互作用, 既能统一狭义和广义高阶相互作用在定义上的争议, 又可以将个体间的差异(如个体大小、个体的空间分布等信息)考虑进来。最后, 本文对高阶相互作用一些可能的重要研究方向进行了展望: 在自然群落中(尤其同一营养级内)检验高阶相互作用的普遍性与相对重要性, 探讨高阶相互作用的发生机制以及如何将高阶相互作用整合到现有的理论体系中等。高阶相互作用的研究有助于我们全面深刻地理解物种共存和生物多样性的维持机制, 丰富和完善群落生态学的理论框架, 为人类世背景下的生物多样性保护和生态系统功能维持与提升提供基础。
李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进 (2020) 生物间高阶相互作用研究进展. 生物多样性, 28, 1333-1344. DOI: 10.17520/biods.2020217.
Yuanzhi Li, Junli Xiao, Hanlun Liu, Youshi Wang, Chengjin Chu (2020) Advances in higher-order interactions between organisms. Biodiversity Science, 28, 1333-1344. DOI: 10.17520/biods.2020217.
图1 包含直接和间接相互作用的生态网络。灰色箭头为直接配对相互作用(箭头1-3), 黑色箭头为间接相互作用(箭头4-5)。在间接相互作用中, 箭头4表示高阶相互作用, 即物种k影响的是物种j和i之间的相互作用, 箭头5表示链式相互作用, 即物种k先影响物种j的密度进而影响物种i。可见, 物种k对物种i既存在直接相互作用(箭头1), 也存在间接相互作用(箭头4和5)。箭头表示作用方向, 为简单起见, 只绘出了单向作用。
Fig. 1 The ecological network including direct (arrows 1-3) and indirect interactions (arrows 4-5) between species. Arrow 4 indicates that species k may indirectly affect species i by modifying the per capita effect of species j on species i (higher-order interactions, HOIs). Arrow 5 indicates that species k may indirectly affect species i by changing population density of species j (interaction chains). Therefore, species k may have both direct (arrow 1) and indirect (arrows 4-5) effects on species i. For simplicity, we only display direct and indirect effects of species j and k on species i.
图2 生物间相互作用的类型和关系。同一方框内的不同术语为不同角度描述的同一类型的相互作用, 虚线部分为作者见解, 尚无相关文献明确说明。
Fig. 2 The types of biotic interactions. The different terms in the same box were used to describe the same type of interaction in different studies. The part in dashed line is our own opinion.
![]() |
表1 检验模型是否包含狭义高阶相互作用的方法及部分常见模型检验结果。√表示模型中包含狭义高阶相互作用(模型不满足方法中等式), ×表示模型不含狭义高阶相互作用(模型满足方法中等式)。这些方法旨在将狭义高阶相互作用从广义高阶相互作用中区分出来, 其中(1)、(3)和(5)用于检验两物种或两物种以上系统是否包含狭义高阶相互作用, (2)和(4)分别是(1)和(3)用于将狭义高阶相互作用严格定义在三物种或三物种以上系统中时的情况, 因而方法(1)和(2), (3)和(4)在三个以上物种组成的系统中等效。Fi表示物种i的单位种群增长率是其自身及竞争者密度的函数, 这里给出几个常见模型的Fi函数表达式。如果函数Fi对Nj的偏导数?Fi/?Nj能表达成Nj的函数Gij(Nj) (方法1), 或是Ni和Nj的函数Gij(Ni, Nj) (方法2), 或是Nj和Fi自身的函数Gij(Fi, Nj) (方法3), 或是Ni和Nj以及Fi的函数Gij(Fi, Ni, Nj) (方法4), 则模型没有狭义高阶相互作用。方法(5)中, Qi表示函数Fi中所有参数的集合, jij表示除物种j外所有物种的密度均为0时函数Fi(0, …, Nj, …, 0)中的参数, Fi则是jij (j = 1, …, S)的并集。若Qi = Fi, 则模型没有狭义高阶相互作用。
Table 1 The methods of detecting whether a species interaction model contains hard higher-order interactions (hard-HOIs) and the outcomes of some well known models. √ and × indicate the model contains (the equation in a method is violated) and does not contain (the equation in a mothed is satisfied) hard-HOIs, respectively. Methods (1), (3) and (5) are used in the case of HOIs defined in systems of two or more species, and methods (2) and (4) are special cases of (1) and (3) where HOIs are strictedly defined in systems of three or more species. Fi indicates the per capita growth rate of species i as a function the densities of itself and its competitiors. If the partial derivative of Fi to Nj (?Fi/?Nj) can be expressed as only a function of Nj: Gij(Nj) (method 1), or a function of Ni and Nj: Gij(Ni, Nj) (method 2), or function of Nj and Fi: Gij(Fi, Nj) (method 3), or a function of Ni, Nj and Fi: Gij(Fi, Ni, Nj) (method 4), then the model Fi does not contain hard-HOIs according to methods 1-4, respectively. In method (5), Qi indicates the set of paramters in function Fi; jij indicates the set of parameters in function Fi(0, …, Nj, …, 0) when densities of all species are zero except species j; Fi is the union of jij (j = 1, …, S). If Qi = Fi, then the model Fi does not contain hard-HOIs.
![]() |
图3 邻体对目标个体的直接(直线箭头)与高阶相互作用(曲线箭头)。参数$\alpha_{i_{m}j_{p}}$表示的是邻体jp对目标个体im的直接相互作用, 参数$\beta_{i_{m}j_{p},k_{q}}$表示的是邻体kq通过个体jp对目标个体im的高阶相互作用。森林群落研究中一般假定直接相互作用发生于邻体jp在目标个体im半径为R的邻域内(实直线箭头), 因而高阶相互作用发生于当邻体jp在目标个体im半径为R的邻域内且邻体的邻体kq在邻体jp的邻域内(实曲线箭头)。虚线箭头表示邻域外不需要考虑的直接与高阶相互作用。
Fig. 3 Direct (straight arrows) and higher-order interactions (curve arrows) of neighbouring trees on a focal tree. The parameter $\alpha_{i_{m}j_{p}}$ quantifies the direct effect of a neighbour (individual p of species j) on the focal tree (individual m of species i). The direct interaction occurs only when a neighbour (jp) is located within a maximum radius (R) of im (solid straight arrows). The parameter $\beta_{i_{m}j_{p},k_{q}}$ quantifies the higher-order effect of a neighbour (individual q of species k) on the focal tree through another neighbour (individual p of species j). Higher-order interaction occurs only jp is located within the maximum radius (R) of im and kq is located within the maximum radius (R) of jp (solid curve arrows). Dashed arrows indicate direct interactions and higher-order interactions that are not considered when a neighbour is located outside the maximum radius (R) of the focal tree or its neighbour(s).
[1] | Abrams PA (1983) Arguments in favor of higher order interactions. The American Naturalist, 121, 887-891. |
[2] | Abrams PA (1995) Implications of dynamically variable traits for identifying, classifying, and measuring direct and indirect effects in ecological communities. The American Naturalist, 146, 112-134. |
[3] | Adler FR, Morris WF (1994) A general test for interaction modification. Ecology, 75, 1552-1559. |
[4] | Allesina S, Levine JM (2011) A competitive network theory of species diversity. Proceedings of the National Academy of Sciences, USA, 108, 5638-5642. |
[5] | Arditi R, Michalski J, Hirzel AH (2005) Rheagogies: Modelling non-trophic effects in food webs. Ecological Complexity, 2, 249-258. |
[6] |
Bairey E, Kelsic ED, Kishony R (2016) High-order species interactions shape ecosystem diversity. Nature Communications, 7, 12285.
DOI URL PMID |
[7] | Bascompte J, Melián CJ (2005) Simple trophic modules for complex food webs. Ecology, 86, 2868-2873. |
[8] |
Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018-1020.
DOI URL PMID |
[9] | Beckerman AP, Uriarte M, Schmitz OJ (1997) Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chain. Proceedings of the National Academy of Sciences, USA, 94, 10735-10738. |
[10] | Billick I, Case TJ (1994) Higher order interactions in ecological communities: What are they and how can they be detected? Ecology, 75, 1529-1543. |
[11] | Canham CD, LePage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: Effects of shading versus crowding. Canadian Journal of Forest Research, 34, 778-787. |
[12] | Case TJ, Bender EA (1981) Testing for higher order interactions. The American Naturalist, 118, 920-929. |
[13] | Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366. |
[14] | Chesson P (2012) Species competition and predation. In: Encyclopedia of Sustainability Science and Technology (ed. Leemans R), pp. 223-256. Springer, New York. |
[15] | Chesson P (2018) Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 106, 1773-1794. |
[16] | Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract) |
[ 储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.] | |
[17] | Darwin C (1859) On the Origin of Species by Means of Natural Selection. John Murray, London. |
[18] | Fang Q, Huang SQ (2012) Progress in pollination networks: Network structure and dynamics. Biodiversity Science, 20, 300-307. (in Chinese with English abstract) |
[ 方强, 黄双全 (2012) 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 20, 300-307.] | |
[19] |
Gallien L, Zimmermann NE, Levine JM, Adler PB (2017) The effects of intransitive competition on coexistence. Ecology Letters, 20, 791-800.
DOI URL PMID |
[20] |
Goudard A, Loreau M (2008) Nontrophic interactions, biodiversity, and ecosystem functioning: An interaction web model. The American Naturalist, 171, 91-106.
DOI URL PMID |
[21] |
Grilli J, Barabás G, Michalska-Smith MJ, Allesina S (2017) Higher-order interactions stabilize dynamics in competitive network models. Nature, 548, 210-213.
DOI URL PMID |
[22] | Hairston NG, Allan JD, Colwell RK, Futuyma DJ, Howell J, Lubin MD, Mathias J, Vandermeer JH (1968) The relationship between species diversity and stability: An experimental approach with protozoa and bacteria. Ecology, 49, 1091-1101. |
[23] | Hasenauer H (2006) Sustainable Forest Management: Growth Models for Europe. Springer, New York. |
[24] |
Hassell MP, Comins HN (1976) Discrete time models for two-species competition. Theoretical Population Biology, 9, 202-221.
DOI URL PMID |
[25] |
Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science, 286, 1123-1127.
DOI URL PMID |
[26] | Hegyi F (1974) A simulation model for managing jack-pine stands. In: Growth Models for Tree and Stand Simulation (ed. Fries J), pp. 74-90. Royal College of Forestry, Banbury. |
[27] | Huang C, Sih A (1990) Experimental studies on behaviorally mediated, indirect interactions through a shared predator. Ecology, 71, 1515-1522. |
[28] | Ives AR, Cardinale BJ, Snyder WE (2005) A synthesis of subdisciplines: Predator-prey interactions, and biodiversity and ecosystem functioning. Ecology Letters, 8, 102-116. |
[29] | Jackrel SL, Wootton JT (2015) Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function. Proceedings of the Royal Society B: Biological Sciences, 282, 20142522. |
[30] |
Johansson F (1995) Increased prey vulnerability as a result of prey-prey interactions. Hydrobiologia, 308, 131-137.
DOI URL |
[31] |
Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 418, 171-174.
DOI URL PMID |
[32] |
Kleinhesselink AR, Kraft NJB, Levine JM (2019) Mechanisms underlying higher order interactions: From quantitative definitions to ecological processes. bioRxiv, https://doi.org/10.1101/857920.
DOI URL PMID |
[33] |
Laird RA, Schamp BS (2006) Competitive intransitivity promotes species coexistence. The American Naturalist, 168, 182-193.
DOI URL PMID |
[34] |
Laird RA, Schamp BS (2008) Does local competition increase the coexistence of species in intransitive networks. Ecology, 89, 237-247.
DOI URL PMID |
[35] |
Letten AD, Stouffer DB (2019) The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecology Letters, 22, 423-436.
DOI URL PMID |
[36] | Levine JM, Bascompte J, Adler PB, Allesina S (2017) Beyond pairwise mechanisms of species coexistence in complex communities. Nature, 546, 56-64. |
[37] |
Li YZ, Mayfield M, Wang B, Xiao JL, Kral K, Janik D, Holik J, Chu CJ (2020) Beyond direct neighbourhood effects: Higher-order interactions improve modelling and predicting tree survival and growth. National Science Review, 7, https://doi.org/10.1093/nsr/nwaa244.
DOI URL PMID |
[38] |
Liao JB, Xi XQ, Bearup D, Sun SC (2020) Metacommunity robustness of plant-fly-wasp tripartite networks with specialization to habitat loss. Ecology, 101, e03071.
URL PMID |
[39] | Lima SL (1998) Stress and decision making under the risk of predation: Recent developments from behavioral, reproductive, and ecological perspectives. In: Advances in the Study of Behavior: Stress and Behavior (eds Moller AP, Milinski M, Slater PJB), pp. 215-290. Elsevier, Amsterdam. |
[40] |
Lin YC, Sutherland WJ (2014) Interaction modification effects on ecological networks are affected by ratio dependence and network topology. Journal of Theoretical Biology, 363, 151-157.
DOI URL PMID |
[41] | Loreau M (1998) Biodiversity and ecosystem functioning: A mechanistic model. Proceedings of the National Academy of Sciences, USA, 95, 5632-5636. |
[42] | Loreau M (2000) Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos, 91, 3-17. |
[43] | Lorimer CG (1983) Tests of age-independent competition indices for individual trees in natural hardwood stands. Forest Ecology and Management, 6, 343-360. |
[44] | Losapio G, Montesinos-Navarro A, Saiz H (2019) Perspectives for ecological networks in plant ecology. Plant Ecology & Diversity, 12, 87-102. |
[45] | Lotka AJ (1925) Elements of Physical Biology. Williams and Wilkins Company, Detroit. |
[46] |
Martyn TE, Stouffer DB, Godoy O, Bartomeus I, Pastore A, Mayfield MM (2020) Identifying ‘useful’ fitness models: Balancing the benefits of added complexity with realistic data requirements in models of individual plant fitness. The American Naturalist, https://doi.org/10.1086/713082.
DOI URL PMID |
[47] |
Mayfield MM, Stouffer DB (2017) Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecology & Evolution, 1, 1-7.
URL PMID |
[48] | Maynard DS, Crowther TW, Bradford MA (2017) Competitive network determines the direction of the diversity-function relationship. Proceedings of the National Academy of Sciences, USA, 114, 11464-11469. |
[49] | Messina FJ (1981) Plant protection as a consequence of an ant-membracid mutualism: Interactions on goldenrod (Solidago sp.). Ecology, 62, 1433-1440. |
[50] | Monserud RA, Sterba H (1999) Modeling individual tree mortality for Austrian forest species. Forest Ecology and Management, 113, 109-123. |
[51] | Mopper S, Maschinski J, Cobb N, Whitham TG (1991) A new look at habitat structure: Consequences of herbivore-modified plant architecture. In: Habitat Structure: The Physical Arrangement of Objects in Space (eds Bell SS, McCoy ED, Mushinsky HR), pp. 260-280. Springer Netherlands, Dordrecht. |
[52] | Morin PJ, Lawler SP, Johnson EA (1988) Competition between aquatic insects and vertebrates: Interaction strength and higher order interactions. Ecology, 69, 1401-1409. |
[53] | Neill WE (1974) The community matrix and interdependence of the competition coefficients. The American Naturalist, 108, 399-408. |
[54] | Padilla FM, Mommer L, de Caluwe H, Smit-Tiekstra AE, Wagemaker CA, Ouborg NJ, de Kroon H (2013) Early root overproduction not triggered by nutrients decisive for competitive success belowground. PLoS ONE, 8, e55805. |
[55] |
Reichenbach T, Mobilia M, Frey E (2007) Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature, 448, 1046-1049.
DOI URL PMID |
[56] | Ricker WE (1958) Handbook of Computations for Biological Statistics of Fish Populations. Fisheries Research Board of Canada, Ottawa. |
[57] |
Rojas-Echenique J, Allesina S (2011) Interaction rules affect species coexistence in intransitive networks. Ecology, 92, 1174-1180.
DOI URL PMID |
[58] |
Singh P, Baruah G (2020) Higher order interactions and species coexistence. Theoretical Ecology, https://doi.org/10.1007/s12080-020-00481-8.
DOI URL PMID |
[59] | Soliveres S, Lehmann A, Boch S, Altermatt F, Carrara F, Crowther TW, Delgado-Baquerizo M, Kempel A, Maynard DS, Rillig MC, Singh BK, Trivedi P, Allan E (2018) Intransitive competition is common across five major taxonomic groups and is driven by productivity, competitive rank and functional traits. Journal of Ecology, 106, 852-864. |
[60] |
Soliveres S, Maestre FT, Ulrich W, Manning P, Boch S, Bowker MA, Prati D, Delgado-Baquerizo M, Quero JL, Schöning I, Gallardo A, Weisser W, Müller J, Socher SA, García-Gómez M, Ochoa V, Schulze ED, Fischer M, Allan E (2015) Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters, 18, 790-798.
URL PMID |
[61] | Song CL (2020) Structural stability: Concepts, methods, and applications. Biodiversity Science, 28, 1345-1361. (in Chinese with English abstract) |
[ 宋础良 (2020) 结构稳定性: 概念、方法和应用. 生物多样性, 1345-1361.] | |
[62] | Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs, 75, 37-63. |
[63] |
Stouffer DB, Bascompte J (2010) Understanding food-web persistence from local to global scales. Ecology Letters, 13, 154-161.
DOI URL PMID |
[64] | Thébault E, Loreau M (2003) Food-web constraints on biodiversity-ecosystem functioning relationships. Proceedings of the National Academy of Sciences, USA, 100, 14949-14954. |
[65] | Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences, USA, 94, 1857-1861. |
[66] | Tscharntke T (1999) Insects on common reed (Phragmites australis): Community structure and the impact of herbivory on shoot growth. Aquatic Botany, 64, 399-410. |
[67] | Turner A, Mittelbach G (1990) Predator avoidance and community structure: Interactions among piscivores, planktivores, and plankton. Ecology, 77, 2241-2254. |
[68] | Turner AM (1996) Freshwater snails habitat use in response to predation. Animal Behaviour, 51, 747-756. |
[69] | Turner AM (1997) Contrasting short-term and long-term effects of predation risk on consumer habitat use and resources. Behavioral Ecology, 8, 120-125. |
[70] | Uriarte M, Condit R, Canham CD, Hubbell SP (2004) A spatially explicit model of sapling growth in a tropical forest: Does the identity of neighbours matter? Journal of Ecology, 92, 348-360. |
[71] | van Veen FJF, Godfray HC(2013) Consequences of trait changes in host-parasitoid interactions in insect communities. In: Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (eds Ohgushi T, Schmitz O, Holt RD), pp. 28-46. Cambridge University Press, Cambridge. |
[72] | van Veen FJF, van Holland PD, Godfray HCJ (2005) Stable coexistence in insect communities due to density- and trait-mediated indirect effects. Ecology, 86, 3182-3189. |
[73] | Vandermeer JH (1969) The competitive structure of communities: An experimental approach with protozoa. Ecology, 50, 362-371. |
[74] | Verhuls PF (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondence Mathematique et Physique, 10, 113-121. |
[75] | Volterra V (1926) Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Memoria della Regia Accademia Nazionale dei Lincei, 2, 31-113. |
[76] | Wang SP (2020) Food web structure and functioning: Theoretical advances and outlook. Biodiversity Science, 28, 1391-1404. (in Chinese with English abstract) |
[ 王少鹏 (2020) 食物网结构与功能: 理论进展与展望. 生物多样性, 28, 1391-1404.] | |
[77] |
Weigelt A, Schumacher J, Walther T, Bartelheimer M, Steinlein T, Beyschlag W (2007) Identifying mechanisms of competition in multi-species communities. Journal of Ecology, 95, 53-64.
DOI URL |
[78] | Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393-425. |
[79] | Werner EE, Gilliam JF, Hall DJ, Mittelbach GG (1983) An experimental test of the effects of predation risk on habitat use in fish. Ecology, 64, 1540-1548. |
[80] | Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 1083-1100. |
[81] | Wilbur HM (1972) Competition, predation, and the structure of the ambystoma-rana sylvatica community. Ecology, 53, 3-21. |
[82] | Wootton JT (1993) Indirect effects and habitat use in an intertidal community: Interaction chains and interaction modifications. The American Naturalist, 141, 71-89. |
[83] | Wootton JT (1994a) The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25, 443-466. |
[84] | Wootton JT (1994b) Putting the pieces together: Testing the independence of interactions among organisms. Ecology, 75, 1544-1551. |
[85] | Worthen WB, Moore JL (1991) Higher-order interactions and indirect effects: A resolution using laboratory drosophila communities. The American Naturalist, 138, 1092-1104. |
[86] | Wykoff WR (1990) A basal area increment model for individual conifers in the northern Rocky Mountains. Forest Science, 36, 1077-1104. |
[87] | Xi XQ, Wu XW, Nylin S, Sun SC (2016) Body size response to warming: Time of the season matters in a tephritid fly. Oikos, 125, 386-394. |
[88] |
Xi XQ, Yang Y, Yang YH, Segoli M, Sun SC (2017) Plant-mediated resource partitioning by coexisting parasitoids. Ecology, 98, 1660-1670.
DOI URL PMID |
[89] | Xiao JL, Li YZ, Chu CJ, Wang YS, Meiners SJ, Stouffer DB (2020) Higher-order interactions mitigate direct negative effects on population dynamics of herbaceous plants during succession. Environmental Research Letters, 15, 074023. |
[90] | Xu GH, Li XY, Shi CH (2019) The complexity-stability relationship: Progress in mathematical models. Biodiversity Science, 27, 1364-1378. (in Chinese with English abstract) |
[ 徐光华, 李小玉, 施春华 (2019) 复杂性-稳定性研究: 数学模型的进展. 生物多样性, 27, 1364-1378.] | |
[91] |
Yang XF, Yan C, Gu HF, Zhang ZM (2020) Interspecific synchrony of seed rain shapes rodent-mediated indirect seed-seed interactions of sympatric tree species in a subtropical forest. Ecology Letters, 23, 45-54.
DOI URL PMID |
[92] | Yang XF, Zhang HM, Zhang ZB (2020) Mast seeding and its relationship with animal’s hoarding behaviour. Biodiversity Science, 28, 821-832. (in Chinese with English abstract) |
[ 杨锡福, 张洪茂, 张知彬 (2020) 植物大年结实及其与动物贮食行为之间的关系. 生物多样性, 28, 821-832.] | |
[93] | Zhu Y, Wang DZ, Zhong ZW (2017) Characteristics, causes, and consequences of trait-mediated indirect interactions in ecosystems. Acta Ecologica Sinica, 37, 7781-7790. (in Chinese with English abstract) |
[ 朱玉, 王德利, 钟志伟 (2017) 生态系统基于性状调节的物种间接作用: 特征、成因及后果. 生态学报, 37, 7781-7790.] |
[1] | 冯志荣, 陈有城, 彭艳琼, 李莉, 王波. 生态网络分析: 从集合群落到集合网络[J]. 生物多样性, 2023, 31(8): 23171-. |
[2] | 王文婷, 王蓉, 牛翠平, 白杨, 杨效东. 西双版纳农林复合橡胶林土壤多营养级生物网络结构[J]. 生物多样性, 2023, 31(6): 22626-. |
[3] | 付树森, 宋普庆, 李渊, 李袁源, 张然, 张琥顺, 王芮, 林龙山. 白令海与楚科奇海鱼类营养级与营养生态位[J]. 生物多样性, 2023, 31(4): 22521-. |
[4] | 徐鹏, 荣晓莹, 刘朝红, 杜芳, 尹本丰, 陶冶, 张元明. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响[J]. 生物多样性, 2022, 30(3): 21327-. |
[5] | 黄正良, 刘翰伦, 储诚进, 李远智. 生物间非传递性竞争研究进展[J]. 生物多样性, 2022, 30(2): 21282-. |
[6] | 徐承香, 赵璐, 杜维锋, 张思强, 吴永英, 周非. 贵州荔波玉屏洞穴陆生动物食物来源及营养级[J]. 生物多样性, 2021, 29(8): 1108-1119. |
[7] | 董乙乂,彭艳琼,王波. 垂叶榕榕小蜂群落及种间互作网络季节动态[J]. 生物多样性, 2020, 28(4): 496-503. |
[8] | 宋博,陈琳琳,闫朗,姜少玉,刘春云,李秉钧,李宝泉. 山东东营和烟台潮间带海草床食物网结构特征[J]. 生物多样性, 2019, 27(9): 984-992. |
[9] | 王凤珍, 唐毅. 食物网关键种的判定及其对稳健性的影响[J]. 生物多样性, 2019, 27(10): 1132-1137. |
[10] | 廖建基, 郑新庆, 杜建国, 陈彬, 马志远, 胡文佳. 厦门同安湾定置网捕获鱼类的多样性及营养级特征[J]. 生物多样性, 2014, 22(5): 624-629. |
[11] | 高永利, 黄晖, 练健生, 杨剑辉. 西沙群岛礁栖鱼类物种多样性及其食性特征[J]. 生物多样性, 2014, 22(5): 618-623. |
[12] | 杜建国, 叶观琼, 陈彬, 郑新庆. 中国海域海洋生物的营养级指数变化特征[J]. 生物多样性, 2014, 22(4): 532-538. |
[13] | 杜建国, 陈彬, 卢振彬, 宋普庆, 许章程, 俞炜炜, 宋希坤. 泉州湾海域鱼类多样性及营养级变化[J]. 生物多样性, 2010, 18(4): 420-427. |
[14] | 吴纪华, 宋慈玉, 陈家宽. 食微线虫对植物生长及土壤养分循环的影响[J]. 生物多样性, 2007, 15(2): 124-133. |
[15] | 韩博平. 生态系统中流动路径多样性的测度[J]. 生物多样性, 1996, 04(2): 114-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn