生物多样性 ›› 2022, Vol. 30 ›› Issue (3): 21327. DOI: 10.17520/biods.2021327
所属专题: 土壤生物与土壤健康
徐鹏1,2, 荣晓莹1,*(), 刘朝红3, 杜芳1,2, 尹本丰1, 陶冶1, 张元明1
收稿日期:
2021-08-18
接受日期:
2021-01-14
出版日期:
2022-03-20
发布日期:
2022-03-11
通讯作者:
荣晓莹
作者简介:
*E-mail: rongxy@ms.xjb.ac.cn基金资助:
Peng Xu1,2, Xiaoying Rong1,*(), Chaohong Liu3, Fang Du1,2, Benfeng Yin1, Ye Tao1, Yuanming Zhang1
Received:
2021-08-18
Accepted:
2021-01-14
Online:
2022-03-20
Published:
2022-03-11
Contact:
Xiaoying Rong
摘要:
评估极端干旱对温带荒漠土壤真菌群落的影响有助于进一步认识干旱导致的区域荒漠化特征。本研究利用在古尔班通古特沙漠建立的干旱三年和干旱十年样地, 分析了长期极端干旱对温带荒漠土壤真菌群落和生态网络的影响。结果显示, 干旱三年与干旱十年处理对总真菌和丰富真菌的Chao1和Shannon多样性指数均无显著性影响, 而对稀有真菌的Shannon多样性指数有显著促进作用; 干旱三年和干旱十年处理显著影响总真菌、丰富和稀有真菌的群落组成, 且极端干旱对稀有真菌群落变异的影响(ANOSIM, R = 0.378-0.595, P < 0.01)大于对丰富真菌的影响(ANOSIM, R = 0.282-0.555, P < 0.01), 表明丰富真菌具有更强的干旱抵抗力; 另外, 极端干旱显著降低了总真菌、丰富和稀有真菌的β多样性, 表明极端干旱具有生态过滤作用。分子生态网络结果显示, 干旱三年与干旱十年处理降低了荒漠土壤真菌群落网络复杂性, 表明极端干旱减弱了真菌物种间的相互作用; 相比稀有真菌, 丰富真菌具有更高的节点拓扑参数(P < 0.05), 表明丰富真菌对维持极端干旱下的真菌物种间相互作用的重要性。综上所述, 极端干旱显著改变了荒漠表层土壤真菌群落组成, 减弱了真菌物种间的相互作用; 稀有真菌敏感响应极端干旱, 有利于减缓荒漠土壤真菌群落响应的滞后性; 丰富真菌作为网络的核心菌群, 对维持极端干旱下的真菌群落稳定性以及物种间的相互作用很关键。
徐鹏, 荣晓莹, 刘朝红, 杜芳, 尹本丰, 陶冶, 张元明 (2022) 极端干旱对温带荒漠土壤真菌群落和生态网络的影响. 生物多样性, 30, 21327. DOI: 10.17520/biods.2021327.
Peng Xu, Xiaoying Rong, Chaohong Liu, Fang Du, Benfeng Yin, Ye Tao, Yuanming Zhang (2022) Effects of extreme drought on community and ecological network of soil fungi in a temperate desert. Biodiversity Science, 30, 21327. DOI: 10.17520/biods.2021327.
图1 极端干旱对不同丰度真菌群落结构的影响。(a)基于Bray-Curtis距离的真菌群落结构主坐标排序分析。(b) Venn图显示D3、D10处理与CK土壤的特有及共有OTUs数量。(c)极端干旱对真菌群落Bray-Curtis距离相异分布指数的影响, 不同字母表示Bray-Curtis相异分布指数在不同干旱处理间的差异显著(P < 0.05)。
Fig. 1 Effects of extreme drought on whole, abundant and rare fungal community structure. (a) Principal co-ordinate analysis of fungal communities based on Bray-Curtis distances. (b) Venn diagram showing the number of unique and shared OTUs in CK, D3 and D10. (c) Effects of extreme drought on Bray-Curtis distance differences in fungal communities. Different letters indicate significant differences in Bray-Curtis dissimilarity among different drought treatments (P < 0.05).
环境因子 Environmental factors | 总真菌 Whole fungi | 丰富真菌 Abundant fungi | 稀有真菌 Rare fungi | |||
---|---|---|---|---|---|---|
R | P | R | P | R | P | |
土壤含水率 Soil moisture content | 0.102 | 0.106 | 0.117 | 0.080 | 0.071 | 0.163 |
酸碱度 pH | 0.118 | 0.143 | 0.098 | 0.186 | 0.210 | 0.026 |
总碳 Total carbon (TC) | 0.162 | 0.059 | 0.134 | 0.089 | 0.194 | 0.024 |
总有机碳 Total organic carbon (TOC) | 0.161 | 0.060 | 0.168 | 0.057 | 0.109 | 0.117 |
总氮 Total nitrogen (TN) | 0.198 | 0.017 | 0.160 | 0.036 | 0.215 | 0.009 |
铵态氮 NH4+-N | 0.461 | 0.001 | 0.443 | 0.001 | 0.509 | 0.001 |
硝态氮 NO3--N | 0.332 | 0.001 | 0.314 | 0.001 | 0.342 | 0.001 |
总磷 Total phosphorus (TP) | -0.049 | 0.751 | -0.037 | 0.688 | -0.063 | 0.828 |
速效磷 Available phosphorus (AP) | -0.017 | 0.551 | -0.034 | 0.647 | 0.060 | 0.200 |
表1 不同丰度真菌群落与环境因子的Spearman相关性
Table 1 Spearman’s correlations of whole, abundant and rare fungal communities with environmental factors
环境因子 Environmental factors | 总真菌 Whole fungi | 丰富真菌 Abundant fungi | 稀有真菌 Rare fungi | |||
---|---|---|---|---|---|---|
R | P | R | P | R | P | |
土壤含水率 Soil moisture content | 0.102 | 0.106 | 0.117 | 0.080 | 0.071 | 0.163 |
酸碱度 pH | 0.118 | 0.143 | 0.098 | 0.186 | 0.210 | 0.026 |
总碳 Total carbon (TC) | 0.162 | 0.059 | 0.134 | 0.089 | 0.194 | 0.024 |
总有机碳 Total organic carbon (TOC) | 0.161 | 0.060 | 0.168 | 0.057 | 0.109 | 0.117 |
总氮 Total nitrogen (TN) | 0.198 | 0.017 | 0.160 | 0.036 | 0.215 | 0.009 |
铵态氮 NH4+-N | 0.461 | 0.001 | 0.443 | 0.001 | 0.509 | 0.001 |
硝态氮 NO3--N | 0.332 | 0.001 | 0.314 | 0.001 | 0.342 | 0.001 |
总磷 Total phosphorus (TP) | -0.049 | 0.751 | -0.037 | 0.688 | -0.063 | 0.828 |
速效磷 Available phosphorus (AP) | -0.017 | 0.551 | -0.034 | 0.647 | 0.060 | 0.200 |
自然对照 Ambient control (CK) | 干旱三年 Drought for 3 years (D3) | 干旱十年 Drought for 10 years (D10) | |
---|---|---|---|
总节点 Total nodes | 564 | 448 | 489 |
总边 Total edges | 714 | 480 | 495 |
幂律系数 R2 of power-law | 0.958 | 0.976 | 0.921 |
负相关边比例 Negative edges percentage (%) | 54.6 | 66.7 | 51.3 |
相似性阈值 Similarity threshold | 0.830 | 0.830 | 0.830 |
平均度 Average degree | 2.53 | 2.14 | 2.02 |
平均聚集系数 Average clustering coefficient | 0.093 | 0.083 | 0.080 |
平均路径长度 Average path length | 8.00 | 8.95 | 12.50 |
模块化指数 Modularity | 0.841 | 0.875 | 0.939 |
随机网络平均聚集系数 Random average clustering coefficient | 0.005 ± 0.003 | 0.004 ± 0.003 | 0.003 ± 0.002 |
随机网络平均路径长度 Random average path length | 5.866 ± 0.113 | 7.163 ± 0.227 | 8.694 ± 0.363 |
随机网络模块化指数 Random modularity | 0.716 ± 0.006 | 0.799 ± 0.007 | 8.699 ± 0.006 |
表2 不同干旱处理下土壤真菌网络拓扑参数
Table 2 Soil fungal network topological characteristics under different drought treatments
自然对照 Ambient control (CK) | 干旱三年 Drought for 3 years (D3) | 干旱十年 Drought for 10 years (D10) | |
---|---|---|---|
总节点 Total nodes | 564 | 448 | 489 |
总边 Total edges | 714 | 480 | 495 |
幂律系数 R2 of power-law | 0.958 | 0.976 | 0.921 |
负相关边比例 Negative edges percentage (%) | 54.6 | 66.7 | 51.3 |
相似性阈值 Similarity threshold | 0.830 | 0.830 | 0.830 |
平均度 Average degree | 2.53 | 2.14 | 2.02 |
平均聚集系数 Average clustering coefficient | 0.093 | 0.083 | 0.080 |
平均路径长度 Average path length | 8.00 | 8.95 | 12.50 |
模块化指数 Modularity | 0.841 | 0.875 | 0.939 |
随机网络平均聚集系数 Random average clustering coefficient | 0.005 ± 0.003 | 0.004 ± 0.003 | 0.003 ± 0.002 |
随机网络平均路径长度 Random average path length | 5.866 ± 0.113 | 7.163 ± 0.227 | 8.694 ± 0.363 |
随机网络模块化指数 Random modularity | 0.716 ± 0.006 | 0.799 ± 0.007 | 8.699 ± 0.006 |
图2 不同干旱处理真菌相关性网络特征。(a)网络分析揭示不同丰度真菌类群内和类群间的联系。括号外的数字表示总边数量, 括号内的数字表示负相关边数量。(b)不同丰度类群节点拓扑参数的比较。不同字母表示不同丰度类群的节点拓扑参数显示差异显著(P < 0.05)。
Fig. 2 Characteristics of fungal correlation-based networks under different drought treatments. (a) Network analysis displaying intra-associations within each subcommunity as well as inter-associations between subcommunities. The numbers outside and inside parentheses represent negative and total edge numbers, respectively. (b) Comparison of node-level topological features among four different subcommunities. Different letters indicate significant differences in node-level topological parameters of different subcommunities (P < 0.05).
[1] |
Aanderud ZT, Smart TB, Wu N, Taylor AS, Zhang YM, Belnap J (2018) Fungal loop transfer of nitrogen depends on biocrust constituents and nitrogen form. Biogeosciences, 15, 3831-3840.
DOI URL |
[2] |
Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 7, 2229-2241.
DOI URL |
[3] |
Bastida F, Torres IF, Andrés-Abellán M, Baldrian P, López-Mondéjar R, Větrovský T, Richnow HH, Starke R, Ondoño S, García C, López-Serrano FR, Jehmlich N (2017) Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 23, 4185-4203.
DOI PMID |
[4] | Caron DA, Countway PD (2009) Hypotheses on the role of the protistan rare biosphere in a changing world. Aquatic Microbial Ecology, 57, 227-238. |
[5] |
Carvajal JN, Coe KK (2021) Evidence for a fungal loop in shrublands. Journal of Ecology, 109, 1842-1857.
DOI URL |
[6] | Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences, USA, 104, 17430-17434. |
[7] |
Chen DM, Mi J, Chu PF, Cheng JH, Zhang LX, Pan QM, Xie YC, Bai YF (2015) Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecology, 30, 1669-1682.
DOI URL |
[8] | Collins SL, Belnap J, Grimm NB, Rudgers JA, Dahm CN, D’Odorico P, Litvak M, Natvig DO, Peters DC, Pockman WT, Sinsabaugh RL, Wolf BO (2014) A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annual Review of Ecology, Evolution, and Systematics,, 45, 397-419. |
[9] |
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018) Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033.
DOI URL |
[10] |
de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2, 276-280.
DOI URL |
[11] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
DOI PMID |
[12] |
Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ (2012) Molecular ecological network analyses. BMC Bioinformatics, 13, 113.
DOI PMID |
[13] |
Ding YH, Ren GY, Zhao ZC, Xu Y, Luo Y, Li QP, Zhang J (2007) Detection, causes and projection of climate change over China: An overview of recent progress. Advances in Atmospheric Sciences, 24, 954-971.
DOI URL |
[14] |
Du HY, Zhou C, Tang HQ, Jin XL, Chen DS, Jiang PH, Li MC (2021) Simulation and estimation of future precipitation changes in arid regions: A case study of Xinjiang, Northwest China. Climatic Change, 167, 43.
DOI URL |
[15] |
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200.
DOI URL |
[16] |
Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. The ISME Journal, 6, 330-342.
DOI URL |
[17] |
Evans SE, Burke IC (2013) Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 16, 20-33.
DOI URL |
[18] |
Fanin N, Hättenschwiler S, Schimann H, Fromin N (2015) Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest. Functional Ecology, 29, 140-150.
DOI URL |
[19] | Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13, 10081-10094. |
[20] | Fu CB, Ma ZG (2008) Global change and regional aridification. Chinese Journal of Atmospheric Sciences, (4), 752-760. (in Chinese with English abstract) |
[ 符淙斌, 马柱国 (2008) 全球变化与区域干旱化. 大气科学, (4), 752-760.] | |
[21] |
Gao C, Kim YC, Zheng Y, Yang W, Chen L, Ji NN, Wan SQ, Guo LD (2016) Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem. Botany, 94, 459-469.
DOI URL |
[22] |
Gao Y, Xu XT, Ding JJ, Bao F, de Costa YG, Zhuang WQ, Wu B (2021) The responses to long-term water addition of soil bacterial, archaeal, and fungal communities in a desert ecosystem. Microorganisms, 9, 981.
DOI URL |
[23] |
Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB (2011) Fungal community responses to precipitation. Global Change Biology, 17, 1637-1645.
DOI URL |
[24] |
Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK (2017) Effects of drought manipulation on soil nitrogen cycling: A meta-analysis. Journal of Geophysical Research: Biogeosciences, 122, 3260-3272.
DOI URL |
[25] |
Hoover DL, Knapp AK, Smith MD (2014) Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 95, 2646-2656.
DOI URL |
[26] |
Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM (2021) Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350.
DOI URL |
[27] |
Huang G, Li Y (2015) Phenological transition dictates the seasonal dynamics of ecosystem carbon exchange in a desert steppe. Journal of Vegetation Science, 26, 337-347.
DOI URL |
[28] |
Jiao S, Chen WM, Wei GH (2017) Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Molecular Ecology, 26, 5305-5317.
DOI URL |
[29] |
Jiao S, Lu YH (2020) Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Global Change Biology, 26, 4506-4520.
DOI URL |
[30] |
Jiao S, Wang JM, Wei GH, Chen WM, Lu YH (2019) Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere, 235, 248-259.
DOI URL |
[31] |
Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015) The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159.
DOI PMID |
[32] |
Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13, 217-229.
DOI URL |
[33] |
Ma B, Wang HZ, Dsouza M, Lou J, He Y, Dai ZM, Brookes PC, Xu JM, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in Eastern China. The ISME Journal, 10, 1891-1901.
DOI URL |
[34] | Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez JR, Huber-Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang DL, Woods NN, Yuan X, Zaady E, Singh BK (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences, USA, 112, 15684-15689. |
[35] | Maestre FT, Salguero-Gómez R, Quero JL (2012) It is getting hotter in here: Determining and projecting the impacts of global environmental change on drylands. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 3062-3075. |
[36] | Milici M, Deng ZL, Tomasch J, Decelle J, Wos-Oxley ML, Wang H, Jáuregui R, Plumeier I, Giebel HA, Badewien TH, Wurst M, Pieper DH, Simon M, Wagner-Döbler I (2016) Co-occurrence analysis of microbial taxa in the Atlantic Ocean reveals high connectivity in the free-living bacterioplankton. Frontiers in Microbiology, 7, 649. |
[37] | Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, Knight R, Gilbert JA, Quade J, Caporaso JG, Maier RM (2017) Significant impacts of increasing aridity on the arid soil microbiome. mSystems, 2, e00195-16. |
[38] |
Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, Smith MD, Knapp AK, Power SA (2018) Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 24, 2818-2827.
DOI PMID |
[39] |
Paranjape K, Bédard É, Shetty D, Hu MQ, Choon FCP, Prévost M, Faucher SP (2020) Unravelling the importance of the eukaryotic and bacterial communities and their relationship with Legionella spp. ecology in cooling towers: A complex network. Microbiome, 8, 157.
DOI PMID |
[40] |
Qiu LP, Zhang Q, Zhu HS, Reich PB, Banerjee S, van der Heijden MGA, Sadowsky MJ, Ishii S, Jia XX, Shao MG, Liu BY, Jiao H, Li HQ, Wei XR (2021) Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal, 15, 2474-2489.
DOI URL |
[41] |
Ren CJ, Chen J, Lu XJ, Doughty R, Zhao FZ, Zhong ZK, Han XH, Yang GH, Feng YZ, Ren GX (2018) Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 116, 4-10.
DOI URL |
[42] | Ren GY, Yuan YJ, Liu YJ, Ren YY, Wang T, Ren XY (2016) Changes in precipitation over northwest China. Arid Zone Research, 33, 1-19. (in Chinese with English abstract) |
[ 任国玉, 袁玉江, 柳艳菊, 任玉玉, 王涛, 任霄玉 (2016) 我国西北干燥区降水变化规律. 干旱区研究, 33, 1-19.] | |
[43] |
Reynolds JF, Smith DMS, Lambin EF, Turner BL II, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: Building a science for dryland development. Science, 316, 847-851.
PMID |
[44] |
Schmidt PA, Schmitt I, Otte J, Bandow C, Römbke J, Bálint M, Rolshausen G (2018) Season-long experimental drought alters fungal community composition but not diversity in a grassland soil. Microbial Ecology, 75, 468-478.
DOI URL |
[45] |
Schrama M, Bardgett RD (2016) Grassland invasibility varies with drought effects on soil functioning. Journal of Ecology, 104, 1250-1258.
DOI URL |
[46] | Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio, 5, e01371-14. |
[47] |
Shi Y, Zhang KP, Li Q, Liu X, He JS, Chu HY (2020) Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland. Science of the Total Environment, 714, 136794.
DOI URL |
[48] |
Shu DT, Guo YQ, Zhang BG, Zhang CF, Van Nostrand JD, Lin YB, Zhou JZ, Wei GH (2021) Rare prokaryotic sub-communities dominate the complexity of ecological networks and soil multinutrient cycling during long-term secondary succession in China’s Loess Plateau. Science of the Total Environment, 774, 145737.
DOI URL |
[49] |
Song HK, Shi Y, Yang T, Chu HY, He JS, Kim H, Jablonski P, Adams JM (2019) Environmental filtering of bacterial functional diversity along an aridity gradient. Scientific Reports, 9, 866.
DOI URL |
[50] |
Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow CET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun FZ, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal, 5, 1414-1425.
DOI URL |
[51] |
Tao Y, Zhang YM (2012) Effects of leaf hair points on dew deposition and rainfall evaporation rates in moss crusts dominated by Syntrichia caninervis, Gurbantunggut Desert, northwestern China. Acta Ecologica Sinica, 32, 7-16. (in Chinese with English abstract)
DOI URL |
[ 陶冶, 张元明 (2012) 叶片毛尖对齿肋赤藓结皮凝结水形成及蒸发的影响. 生态学报, 32, 7-16.] | |
[52] |
Van Loon AF, Gleeson T, Clark J, Van Dijk A, Stahl K, Hannaford J, Di Baldassarre G, Teuling AJ, Tallaksen LM, Uijlenhoet R, Hannah DM, Sheffield J, Svoboda M, Verbeiren B, Wagener T, Rangecroft S, Wanders N, Van Lanen HAJ (2016) Drought in the Anthropocene. Nature Geoscience, 9, 89-91.
DOI URL |
[53] |
Wada Y, van Beek LPH, Wanders N, Bierkens MFP (2013) Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters, 8, 034036.
DOI URL |
[54] |
Wu J, Barahona M, Tan YJ, Deng HZ (2010) Natural connectivity of complex networks. Chinese Physics Letters, 27, 078902.
DOI URL |
[55] |
Xue YY, Chen HH, Yang JR, Liu M, Huang BQ, Yang J (2018) Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. The ISME Journal, 12, 2263-2277.
DOI URL |
[56] | Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences, USA, 96, 1463-1468. |
[57] |
Yang XC, Henry HAL, Zhong SZ, Meng B, Wang CL, Gao Y, Sun W (2020) Towards a mechanistic understanding of soil nitrogen availability responses to summer vs. winter drought in a semiarid grassland. Science of the Total Environment, 741, 140272.
DOI URL |
[58] |
Yang XC, Zhu K, Loik ME, Sun W (2021) Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe. Geoderma, 384, 114812.
DOI URL |
[59] |
Yao MJ, Rui JP, Niu HS, Heděnec P, Li JB, He ZL, Wang JM, Cao WD, Li XZ (2017) The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. CATENA, 152, 47- 56.
DOI URL |
[60] |
Zang YX, Min XJ, de Dios VR, Ma JY, Sun W (2020) Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies. Science of the Total Environment, 717, 137251.
DOI URL |
[61] |
Zhang JL, Liu SR, Liu CJ, Wang H, Luan JW, Liu XJ, Guo XW, Niu BL (2021) Soil bacterial and fungal richness and network exhibit different responses to long-term throughfall reduction in a warm-temperate oak forest. Forests, 12, 165.
DOI URL |
[62] |
Zhou H, Gao Y, Jia XH, Wang MM, Ding JJ, Cheng L, Bao F, Wu B (2020) Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China. Soil Biology and Biochemistry, 144, 107782.
DOI URL |
[1] | 王雅婷, 张定海, 张志山. 古尔班通古特沙漠固定沙丘上白梭梭和梭梭的空间分布及种间关联性[J]. 生物多样性, 2022, 30(3): 21280-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn