生物多样性 ›› 2019, Vol. 27 ›› Issue (10): 1132-1137. DOI: 10.17520/biods.2019208
收稿日期:
2019-07-01
接受日期:
2019-09-29
出版日期:
2019-10-20
发布日期:
2019-10-20
通讯作者:
唐毅
基金资助:
Fengzhen Wang1, Yi Tang1,2,*()
Received:
2019-07-01
Accepted:
2019-09-29
Online:
2019-10-20
Published:
2019-10-20
Contact:
Yi Tang
摘要:
食物网关键种的定量判定方法不仅有助于揭示食物网中的物种关系, 而且有利于对关键物种进行优先保护。本研究以包含49个物种的河流生态系统食物网为对象, 计算网络中表征度性质的指标(点度中心度、中介中心度、紧密中心度), 并根据指标对物种进行聚类, 分析不同类物种影响食物网连接稳健性程度的差异, 探讨不同节点去除方式下节点数量对食物网连接稳健性的影响。结果发现, 聚类将食物网中物种分成三类。I类物种具有相对较高的点度中心度、中介中心度、紧密中心度; II类物种具有相对更低的点度中心度、中介中心度、紧密中心度; III类物种的点度中心度、中介中心度、紧密中心度介于前两者之间。I类物种处于更为重要的地位, 可认为是关键种。本研究为如何判定关键种贡献了新的思路。另外, 升序去除方式下, 连接稳健性呈降低趋势; 降序去除与随机去除方式下, 连接稳健性在持续降低后又有小幅度增加, 这表明去除方式对食物网连接稳健性有影响。三种去除方式下, 食物网连接稳健性发生显著变化对应着几乎相同的去除节点数量, 表明关键种在维持食物网稳健性方面发挥着重要作用。
王凤珍, 唐毅 (2019) 食物网关键种的判定及其对稳健性的影响. 生物多样性, 27, 1132-1137. DOI: 10.17520/biods.2019208.
Fengzhen Wang, Yi Tang (2019) Determination of key species in the food web and their impact on the robustness. Biodiversity Science, 27, 1132-1137. DOI: 10.17520/biods.2019208.
类别 Cluster | 指标 Indices | 均值 Mean | 方差 Variance | 中位数 Median | 最大值 Maximum | 最小值 Minimum |
---|---|---|---|---|---|---|
Ⅰ类 | 点度中心度 DC | 0.394 | 0.027 | 0.383 | 0.575 | 0.234 |
中介中心度 BC | 0.216 | 0.028 | 0.180 | 0.428 | 0.078 | |
紧密中心度 CC | 0.538 | 0.012 | 0.528 | 0.662 | 0.435 | |
Ⅱ类 | 点度中心度 DC | 0.047 | 0.001 | 0.043 | 0.106 | 0.021 |
中介中心度 BC | 0.003 | 0.000 | 0.001 | 0.011 | 0.000 | |
紧密中心度 CC | 0.386 | 0.002 | 0.398 | 0.465 | 0.305 | |
Ⅲ类 | 点度中心度 DC | 0.116 | 0.001 | 0.106 | 0.170 | 0.064 |
中介中心度 BC | 0.036 | 0.001 | 0.031 | 0.083 | 0.003 | |
紧密中心度 CC | 0.469 | 0.000 | 0.470 | 0.500 | 0.431 |
表1 节点的点度中心度、中介中心度、紧密中心度的汇总统计量
Table 1 The summary of degree centrality (DC), betweenness centrality (BC) and closeness centrality (CC) of nodes in classes
类别 Cluster | 指标 Indices | 均值 Mean | 方差 Variance | 中位数 Median | 最大值 Maximum | 最小值 Minimum |
---|---|---|---|---|---|---|
Ⅰ类 | 点度中心度 DC | 0.394 | 0.027 | 0.383 | 0.575 | 0.234 |
中介中心度 BC | 0.216 | 0.028 | 0.180 | 0.428 | 0.078 | |
紧密中心度 CC | 0.538 | 0.012 | 0.528 | 0.662 | 0.435 | |
Ⅱ类 | 点度中心度 DC | 0.047 | 0.001 | 0.043 | 0.106 | 0.021 |
中介中心度 BC | 0.003 | 0.000 | 0.001 | 0.011 | 0.000 | |
紧密中心度 CC | 0.386 | 0.002 | 0.398 | 0.465 | 0.305 | |
Ⅲ类 | 点度中心度 DC | 0.116 | 0.001 | 0.106 | 0.170 | 0.064 |
中介中心度 BC | 0.036 | 0.001 | 0.031 | 0.083 | 0.003 | |
紧密中心度 CC | 0.469 | 0.000 | 0.470 | 0.500 | 0.431 |
[1] | Aguilar R, Ashworth L, Galetto L, Aizen MA ( 2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980. |
[2] | Du W, Cai M, Du HF ( 2010) Study on indices of network structure robustness and their application. Journal of Xi’an Jiaotong University, 44(4), 93-97. (in Chinese with English abstract) |
[ 杜巍, 蔡萌, 杜海峰 ( 2010) 网络结构鲁棒性指标及应用研究. 西安交通大学学报, 44(4), 93-97.] | |
[3] | Dunne JA, Williams RJ, Martinez ND ( 2002) Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5, 558-567. |
[4] | Elton CS ( 1958) The Ecology of Invasions by Animals and Plants. Chapman and Hall, London. |
[5] | Han XG, Huang JH, Lou ZP ( 1995) The significance and problems of key concepts in biodiversity conservation. Chinese Bulletin of Botany, 12(S2), 168-184. (in Chinese) |
[ 韩兴国, 黄建辉, 娄治平 ( 1995) 关键种概念在生物多样性保护中的意义与存在的问题. 植物学通报, 12(S2), 168-184.] | |
[6] | Hastings A, Mccann KS, De Ruiter PC ( 2016) Introduction to the special issue: Theory of food webs. Theoretical Ecology, 9, 1-2. |
[7] | Kadoya T, Gellner G, McCann KS ( 2018) Potential oscillators and keystone modules in food webs. Ecology Letters, 21, 1330-1340. |
[8] | Kitano H ( 2007) Towards a theory of biological robustness. Molecular Systems Biology, 3, 137. |
[9] | Li YM, Li X, Hua J ( 2014) Ecosystem stability and ecological diversity based on complex networks. Chinese Journal of Ecology, 33, 1700-1706. (in Chinese with English abstract) |
[ 李医民, 李鑫, 华静 ( 2014) 基于复杂网络的生态系统稳定性与生态多样性. 生态学杂志, 33, 1700-1706.] | |
[10] | Liao J, Bearup D, Wang Y, Nijs I, Bonte D, Li Y, Brose U, Wang S, Blasius B ( 2017) Robustness of metacommunities with omnivory to habitat destruction: Disentangling patch fragmentation from patch loss. Ecology, 98, 1631-1639. |
[11] | MacArthur R ( 1955) Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533-536. |
[12] | Memmott J, Waser NM, Price MV ( 2004) Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society B: Biological Sciences, 271, 2605-2611. |
[13] | Paine RT ( 1966) Food web complexity and species diversity. The American Naturalist, 100, 65-75. |
[14] | Paine RT ( 1969) A note on trophic complexity and community stability. The American Naturalist, 103, 91-93. |
[15] | Saint-Béat B, Baird D, Asmus H, Asmus R, Bacher C, Pacella SR, Johnson GA, David V, Vézina AF, Niquil N ( 2015) Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52, 458-471. |
[16] | Scrucca L, Fop M, Murphy TB, Raftery AE ( 2016) mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8, 289-317. |
[17] | Solé RV, Montoya JM ( 2001) Complexity and fragility in ecological networks. Proceedings of the Royal Society B: Biological Sciences, 268, 2039-2045. |
[18] | Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J ( 2004) Robustness of cellular functions. Cell, 118, 675-685. |
[19] | Stone R ( 2010) Home, home outside the range? Science, 329, 1592-1594. |
[20] | Sun G, Sheng LX ( 2000) Key species theory of ecosystem: New ideas, new mechanisms, new ways. Journal of Northeast Normal University (Natural Science Edition), 32(3), 73-77. (in Chinese with English abstract) |
[ 孙刚, 盛连喜 ( 2000) 生态系统关键种理论: 新思想、新机制、新途径. 东北师大学报(自然科学版), 32(3), 73-77.] | |
[21] | Sun LQ, Lin YS, Chen LX, Cao WQ, Zheng LM ( 2016) Study on the structure and function of ecosystem in Northern Beibu Gulf VII: Nutrition structure construction and key screening based on ecopath model. Journal of Tropical Oceanography, 35(4), 51-62. (in Chinese with English abstract) |
[ 孙龙启, 林元烧, 陈俐骁, 曹文清, 郑连明 ( 2016) 北部湾北部生态系统结构与功能研究VII: 基于Ecopath模型的营养结构构建和关键种筛选. 热带海洋学报, 35(4), 51-62.] | |
[22] | Taffi M, Paoletti N, Liò P, Pucciarelli S, Marini M ( 2015) Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea. Ecological Modelling, 306, 205-215. |
[23] | Tang Y ( 2017) Research on traffic node setting in Northeast China under the background of “Belt and Road”. Economy Forum, ( 7), 4-9. (in Chinese) |
[ 唐毅 ( 2017) “一带一路”背景下东北地区交通节点设置研究. 经济论坛, ( 7), 4-9.] | |
[24] | Thompson RM, Townsend CR ( 2005) Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos, 108, 137-148. |
[25] | Wang S, Loreau M ( 2016) Biodiversity and ecosystem stability across scales in metacommunities. Ecology Letters, 19, 510-518. |
[26] | Yu Q, Yang L, Yue DP, Wang YH, Su K, Zhang QB ( 2018) Research on spatial ecological network structure based on complex network analysis. Transactions of the Chinese Society for Agricultural Machinery, 49(3), 214-224. (in Chinese with English abstract) |
[ 于强, 杨斓, 岳德鹏, 王宇航, 苏凯, 张启斌 ( 2018) 基于复杂网络分析法的空间生态网络结构研究. 农业机械学报, 49(3), 214-224.] | |
[27] | Zhang HY, Zhao L, Tian W, Huang H ( 2016) Stability of food webs to biodiversity loss: Comparing the roles of biomass and node degree. Ecological Indicators, 67, 723-729. |
[28] | Zhang Y, Bao Y, Zhao S, Chen J, Tang J ( 2015) Identifying node importance by combining betweenness centrality and Katz centrality. In: 2015 International Conference on Cloud Computing & Big Data, IEEE, pp. 354-357. |
[29] | Zhao L, Zhang H, O’Gorman EJ, Tian W, Ma A, Moore JC, Borrett SR, Woodward G ( 2016) Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 19, 1032-1040. |
[1] | 吴相獐, 雷富民, 单壹壹, 于晶. 上海城市公园苔藓植物多样性分布格局及其环境影响因子[J]. 生物多样性, 2024, 32(2): 23364-. |
[2] | 冯志荣, 陈有城, 彭艳琼, 李莉, 王波. 生态网络分析: 从集合群落到集合网络[J]. 生物多样性, 2023, 31(8): 23171-. |
[3] | 王文婷, 王蓉, 牛翠平, 白杨, 杨效东. 西双版纳农林复合橡胶林土壤多营养级生物网络结构[J]. 生物多样性, 2023, 31(6): 22626-. |
[4] | 徐鹏, 荣晓莹, 刘朝红, 杜芳, 尹本丰, 陶冶, 张元明. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响[J]. 生物多样性, 2022, 30(3): 21327-. |
[5] | 黄正良, 刘翰伦, 储诚进, 李远智. 生物间非传递性竞争研究进展[J]. 生物多样性, 2022, 30(2): 21282-. |
[6] | 刘丽平, 宋瑞凤, 张馥, 张秀香, 彭桂香, 谭志远. 高秆野生稻内生固氮细菌多样性[J]. 生物多样性, 2020, 28(8): 1018-1025. |
[7] | 董乙乂,彭艳琼,王波. 垂叶榕榕小蜂群落及种间互作网络季节动态[J]. 生物多样性, 2020, 28(4): 496-503. |
[8] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
[9] | 李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进. 生物间高阶相互作用研究进展[J]. 生物多样性, 2020, 28(11): 1333-1344. |
[10] | 郜二虎, 何杰坤, 王志臣, 徐扬, 唐小平, 江海声. 全国陆生野生动物调查单元区划方案[J]. 生物多样性, 2017, 25(12): 1321-1330. |
[11] | 林小植, 李冬梅, 刘焕章, 林鸿生, 杨少荣, 范汉金, 温茹淑. 广东韩江潮州江段鱼类多样性及季节变化[J]. 生物多样性, 2016, 24(2): 185-194. |
[12] | 孙立夫, 裴克全, 张艳华, 赵俊, 杨国亭, 秦国夫, 宋玉双, 宋瑞清. 中国与欧洲高卢蜜环菌的遗传多样性[J]. 生物多样性, 2012, 20(2): 224-230. |
[13] | 赖昆祺, 郑又华, 陈岳智, 李佑升, 邵广昭. 运用聚类分析与Google Maps于大量物种出现记录之研究[J]. 生物多样性, 2012, 20(1): 76-85. |
[14] | 周波, 江海东, 张秀新, 薛璟祺, 石颜通. 部分引进牡丹品种的形态多样性[J]. 生物多样性, 2011, 19(5): 543-550. |
[15] | 李春楠, 崔海瑞, 王伟博. 用SRAP标记研究根际土壤微生物的遗传多样性[J]. 生物多样性, 2011, 19(4): 485-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn