生物多样性 ›› 2025, Vol. 33 ›› Issue (4): 24553. DOI: 10.17520/biods.2024553 cstr: 32101.14.biods.2024553
收稿日期:
2024-12-09
接受日期:
2025-02-18
出版日期:
2025-04-20
发布日期:
2025-03-27
通讯作者:
*E-mail: xiaolu@iga.ac.cn;
liuyanjie@iga.ac.cn
基金资助:
Zhang Haobin1,2, Xiao Lu1,*()(
), Liu Yanjie1,*(
)(
)
Received:
2024-12-09
Accepted:
2025-02-18
Online:
2025-04-20
Published:
2025-03-27
Contact:
*E-mail: xiaolu@iga.ac.cn;
liuyanjie@iga.ac.cn
Supported by:
摘要: 过度使用人造夜间灯光所引发的光污染会对多种类型的生物及生态过程造成负面影响。然而, 夜间灯光是否会影响外来入侵植物的入侵频度, 以及夜间灯光对外来入侵植物与本地植物群落组成和植物生长的影响是否存在差异, 尚需进一步解析。本研究通过实地调查, 对比分析了长春市有无路灯区域的外来植物入侵频度、外来入侵植物与本地植物群落组成和多样性以及外来入侵植物与本地植物的平均株高和相对盖度的差异。结果显示: (1)夜间灯光对外来入侵植物分布频度无显著影响; (2)夜间灯光对外来入侵植物和本地植物群落的β多样性也没有显著影响, 但是显著增加外来入侵植物的丰富度(α多样性); (3)夜间灯光显著增加外来入侵植物的平均株高和相对盖度显著增加, 显著降低本地植物的相对盖度, 而对本地植物的平均株高则无显著影响。综上所述, 夜间灯光可能会进一步强化外来入侵植物的竞争优势, 增加其入侵风险。因此, 在未来外来入侵植物防控策略制定中, 应当纳入对这一因素的考量。
张浩斌, 肖路, 刘艳杰 (2025) 夜间灯光对外来入侵植物和本地植物群落多样性和生长的影响. 生物多样性, 33, 24553. DOI: 10.17520/biods.2024553.
Zhang Haobin, Xiao Lu, Liu Yanjie (2025) Effects of artificial light at night on the diversity and growth of invasive alien and native plants. Biodiversity Science, 33, 24553. DOI: 10.17520/biods.2024553.
外来入侵植物 Invasive alien plants | 本地植物 Native plants | |||
---|---|---|---|---|
物种 Species | 频度 Frequency (%) | 物种 Species | 频度 Frequency (%) | |
全部植物 All plants | 豚草 Ambrosia artemisiifolia | 39.13 | 狗尾草 Setaria viridis | 69.57 |
三裂叶豚草 Ambrosia trifida | 31.88 | 稗 Echinochloa crus-galli | 50.72 | |
反枝苋 Amaranthus retroflexus | 18.84 | 马唐 Digitaria sanguinalis | 47.83 | |
牛膝菊 Galinsoga parviflora | 17.39 | 萹蓄 Polygonum aviculare | 40.58 | |
一年蓬 Erigeron annuus | 11.59 | 苦荬菜 Ixeris polycephala | 39.13 | |
有路灯(亮) LIT POLES | 三裂叶豚草 Ambrosia trifida | 40.74 | 狗尾草 Setaria viridis | 74.07 |
豚草 Ambrosia artemisiifolia | 33.33 | 萹蓄 Polygonum aviculare | 55.56 | |
牛膝菊 Galinsoga parviflora | 25.93 | 马唐 Digitaria sanguinalis | 51.85 | |
反枝苋 Amaranthus retroflexus | 22.22 | 稗 Echinochloa crus-galli | 48.15 | |
小蓬草 Erigeron canadensis | 14.81 | 苦荬菜 Ixeris polycephala | 44.44 | |
有路灯(不亮) UNLIT POLES | 豚草 Ambrosia artemisiifolia | 80.00 | 稗 Echinochloa crus-galli | 60.00 |
三裂叶豚草 Ambrosia trifida | 40.00 | 狗尾草 Setaria viridis | 60.00 | |
反枝苋 Amaranthus retroflexus | 20.00 | 藜 Chenopodium album | 50.00 | |
苘麻 Abutilon theophrasti | 10.00 | 野大豆 Glycine soja | 50.00 | |
/ | / | 金色狗尾草 Setaria pumila | 40.00 | |
无路灯 NO POLES | 豚草 Ambrosia artemisiifolia | 31.25 | 狗尾草 Setaria viridis | 68.75 |
三裂叶豚草 Ambrosia trifida | 21.88 | 稗 Echinochloa crus-galli | 50.00 | |
反枝苋 Amaranthus retroflexus | 15.63 | 马唐 Digitaria sanguinalis | 46.88 | |
牛膝菊 Galinsoga parviflora | 15.63 | 蒲公英 Taraxacum mongolicum | 46.88 | |
一年蓬 Erigeron annuus | 12.50 | 大籽蒿 Artemisia sieversiana | 37.50 |
表1 不同夜间灯光水平下主要外来入侵植物和本地植物平均频度
Table 1 Average frequency of main invasive alien and native plants under different levels of artificial light at night
外来入侵植物 Invasive alien plants | 本地植物 Native plants | |||
---|---|---|---|---|
物种 Species | 频度 Frequency (%) | 物种 Species | 频度 Frequency (%) | |
全部植物 All plants | 豚草 Ambrosia artemisiifolia | 39.13 | 狗尾草 Setaria viridis | 69.57 |
三裂叶豚草 Ambrosia trifida | 31.88 | 稗 Echinochloa crus-galli | 50.72 | |
反枝苋 Amaranthus retroflexus | 18.84 | 马唐 Digitaria sanguinalis | 47.83 | |
牛膝菊 Galinsoga parviflora | 17.39 | 萹蓄 Polygonum aviculare | 40.58 | |
一年蓬 Erigeron annuus | 11.59 | 苦荬菜 Ixeris polycephala | 39.13 | |
有路灯(亮) LIT POLES | 三裂叶豚草 Ambrosia trifida | 40.74 | 狗尾草 Setaria viridis | 74.07 |
豚草 Ambrosia artemisiifolia | 33.33 | 萹蓄 Polygonum aviculare | 55.56 | |
牛膝菊 Galinsoga parviflora | 25.93 | 马唐 Digitaria sanguinalis | 51.85 | |
反枝苋 Amaranthus retroflexus | 22.22 | 稗 Echinochloa crus-galli | 48.15 | |
小蓬草 Erigeron canadensis | 14.81 | 苦荬菜 Ixeris polycephala | 44.44 | |
有路灯(不亮) UNLIT POLES | 豚草 Ambrosia artemisiifolia | 80.00 | 稗 Echinochloa crus-galli | 60.00 |
三裂叶豚草 Ambrosia trifida | 40.00 | 狗尾草 Setaria viridis | 60.00 | |
反枝苋 Amaranthus retroflexus | 20.00 | 藜 Chenopodium album | 50.00 | |
苘麻 Abutilon theophrasti | 10.00 | 野大豆 Glycine soja | 50.00 | |
/ | / | 金色狗尾草 Setaria pumila | 40.00 | |
无路灯 NO POLES | 豚草 Ambrosia artemisiifolia | 31.25 | 狗尾草 Setaria viridis | 68.75 |
三裂叶豚草 Ambrosia trifida | 21.88 | 稗 Echinochloa crus-galli | 50.00 | |
反枝苋 Amaranthus retroflexus | 15.63 | 马唐 Digitaria sanguinalis | 46.88 | |
牛膝菊 Galinsoga parviflora | 15.63 | 蒲公英 Taraxacum mongolicum | 46.88 | |
一年蓬 Erigeron annuus | 12.50 | 大籽蒿 Artemisia sieversiana | 37.50 |
图1 基于Bray-Curtis距离外来入侵植物(a)和本地植物(b)群落间β多样性差异的NMDS分析结果。无路灯表示无路灯直接照射区域, 有路灯(不亮)表示该区域有路灯灯杆但是路灯不亮, 有路灯(亮)表示该区域有路灯灯杆且路灯正常亮。
Fig. 1 NMDS analysis results of β diversity differences between the communities of invasive alien plants (a) and native plants (b), based on the Bray-Curtis distance. The areas lacking direct illumination from streetlights (NO POLES); The areas where streetlights on poles are not lit (UNLIT POLES); The areas where streetlights on poles are lit (LIT POLES).
图2 夜间灯光对外来入侵植物和本地植物的α多样性指标(丰富度、Shannon-Wiener多样性指数和Pielou均匀度指数)的影响。无路灯表示无路灯直接照射区域; 有路灯(不亮)表示该区域有路灯灯杆但是路灯不亮; 有路灯(亮)表示该区域有路灯灯杆且路灯正常亮。图中数据为平均值 ± 标准误。不同字母表示同一指标在不同夜间灯光水平间差异显著(P < 0.05)。左上角的回归图展示了外来入侵植物或本地植物的α多样性指标与夜间灯光强度的关系。在显著以及边际显著关系的模型中展示了模型的R2、P值和回归拟合线。
Fig. 2 The impacts of artificial light at night on α-diversity indices (richness, Shannon-Wiener diversity index, and Pielou evenness index) of invasive alien plants and native plants. The areas lacking direct illumination from streetlights (NO POLES); The areas where streetlights on poles are not lit (UNLIT POLES); The areas where streetlights on poles are lit (LIT POLES). The values are the mean ± SE. Different letters indicate significant differences in the same index among different levels of artificial light at night (P < 0.05). The regression plots in the upper left corner illustrate the relationships between the α-diversity indices of invasive alien plants or native plants and the intensity of artificial light at night. For models showing significant and marginally significant relationships, the R², P values, and regression fit lines are displayed.
图3 夜间灯光对外来入侵植物和本地植物平均株高和相对盖度的影响。无路灯表示无路灯直接照射区域, 有路灯(不亮)表示该区域有路灯灯杆但是路灯不亮, 有路灯(亮)表示该区域有路灯灯杆且路灯正常亮。图中数据为平均值 ± 标准误。不同字母表示同一指标在不同夜间灯光水平间差异显著(P < 0.05)。左上角的回归图展示了外来入侵植物或本地植物的生长指标与夜间灯光强度的关系。在显著以及边际显著关系的模型中展示了模型的R2、P值和回归拟合线。
Fig. 3 The impacts of artificial light at night on the average plant height and relative cover of invasive alien plants and native plants. The areas lacking direct illumination from streetlights (NO POLES). The areas where streetlights on poles are not lit (UNLIT POLES). The areas where streetlights on poles are lit (LIT POLES). The values are the mean ± SE. Different letters indicate significant differences in the same index among different levels of artificial light at night (P < 0.05). The regression plots in the upper left corner illustrate the relationships between the growth indices of invasive alien plants or native plants and the intensity of artificial light at night. For models showing significant and marginally significant relationships, the R², P values, and regression fit lines are displayed.
[1] | Abonyo CRK, Oduor AMO (2024) Artificial night-time lighting and nutrient enrichment synergistically favour the growth of alien ornamental plant species over co-occurring native plants. Journal of Ecology, 112, 319-337. |
[2] | Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843. |
[3] | Azeem A, Mai WX, Tian CY, Javed Q, Abbas A (2021) Competition and plant trait plasticity of invasive (Wedelia trilobata) and native species (Wedelia chinensis, WC) under nitrogen enrichment and flooding condition. Water, 13, 3472. |
[4] | Bao SD (2000) Soil Agricultural Chemical Analysis, 3rd edn. China Agricultural Press, Beijing. (in Chinese) |
[鲍士旦 (2000) 土壤农化分析, 第三版. 中国农业出版社, 北京.] | |
[5] | Bennie J, Davies TW, Cruse D, Gaston KJ (2016) Ecological effects of artificial light at night on wild plants. Journal of Ecology, 104, 611-620. |
[6] | Bennie J, Davies TW, Cruse D, Inger R, Gaston KJ (2018) Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations. Journal of Applied Ecology, 55, 2698-2706. |
[7] | Boscutti F, Lami F, Pellegrini E, Buccheri M, Busato F, Martini F, Sibella R, Sigura M, Marini L (2022) Urban sprawl facilitates invasions of exotic plants across multiple spatial scales. Biological Invasions, 24, 1497-1510. |
[8] | Bucher SF, Uhde L, Weigelt A, Cesarz S, Eisenhauer N, Gebler A, Kyba C, Römermann C, Shatwell T, Hines J (2023) Artificial light at night decreases plant diversity and performance in experimental grassland communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 378, 20220358. |
[9] | Cao Y, Zhang S, Ma KM (2024) Artificial light at night decreases leaf herbivory in typical urban areas. Frontiers in Plant Science, 15, 1392262. |
[10] | Crump MC, Brown C, Griffin-Nolan RJ, Angeloni L, Lemoine NP, Seymoure BM (2021) Effects of low-level artificial light at night on Kentucky bluegrass and an introduced herbivore. Frontiers in Ecology and Evolution, 9, 732959. |
[11] |
Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14, 419-431.
DOI PMID |
[12] |
Davies TW, Smyth T (2018) Why artificial light at night should be a focus for global change research in the 21st century. Global Change Biology, 24, 872-882.
DOI PMID |
[13] | Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88, 528-534. |
[14] |
Derryberry EP (2017) Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes. Journal of Animal Ecology, 86, 1283-1285.
DOI PMID |
[15] | Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576. |
[16] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet′ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature, 529, 167-171. |
[17] | Dubois J, Cheptou PO (2017) Effects of fragmentation on plant adaptation to urban environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160038. |
[18] | Editorial Committee of Flora of China, Chinese Academy of Sciences(2004) Flora of China. Science Press, Beijing. (in Chinese) |
[中国科学院中国植物志编辑委员会 (2004) 中国植物志. 科学出版社, 北京.] | |
[19] | El-Barougy RF, Dakhil MA, Abdelaal M, El-Keblawy A, Bersier LF (2021) Trait-environment relationships reveal the success of alien plants invasiveness in an urbanized landscape. Plants, 10, 1519. |
[20] | Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, Portnov BA, Rybnikova NA, Furgoni R (2016) The new world atlas of artificial night sky brightness. Science Advances, 2, e1600377. |
[21] | Ffrench-Constant RH, Somers-Yeates R, Bennie J, Economou T, Hodgson D, Spalding A, McGregor PK (2016) Light pollution is associated with earlier tree budburst across the United Kingdom. Proceedings of the Royal Society B: Biological Sciences, 283, 20160813. |
[22] | Forero LE, Grenzer J, Heinze J, Schittko C, Kulmatiski A (2019) Greenhouse- and field-measured plant-soil feedbacks are not correlated. Frontiers in Environmental Science, 7, 184. |
[23] | Gaston KJ, Bennie J, Davies TW, Hopkins J (2013) The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biological Reviews, 88, 912-927. |
[24] |
Giavi S, Blösch S, Schuster G, Knop E (2020) Artificial light at night can modify ecosystem functioning beyond the lit area. Scientific Reports, 10, 11870.
DOI PMID |
[25] |
Gioria M, Hulme PE, Richardson DM, Pyšek P (2023) Why are invasive plants successful? Annual Review of Plant Biology, 74, 635-670.
DOI PMID |
[26] |
Grenis K, Murphy SM (2019) Direct and indirect effects of light pollution on the performance of an herbivorous insect. Insect Science, 26, 770-776.
DOI PMID |
[27] | Haeuser E, Dawson W, van Kleunen M (2017) The effects of climate warming and disturbance on the colonization potential of ornamental alien plant species. Journal of Ecology, 105, 1698-1708. |
[28] |
Heinen R (2021) A spotlight on the phytobiome: Plant-mediated interactions in an illuminated world. Basic and Applied Ecology, 57, 146-158.
DOI |
[29] | Hopkins GR, Gaston KJ, Visser ME, Elgar MA, Jones TM (2018) Artificial light at night as a driver of evolution across urban-rural landscapes. Frontiers in Ecology and the Environment, 16, 472-479. |
[30] |
Jägerbrand AK, Spoelstra K (2023) Effects of anthropogenic light on species and ecosystems. Science, 380, 1125-1130.
DOI PMID |
[31] | Kyba CCM, Kuester T, Miguel ASD, Baugh K, Jechow A, Hölker F, Bennie J, Elvidge CD, Gaston KJ, Guanter L (2017) Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances, 3, e1701528. |
[32] | Liu YJ, Heinen R (2024) Plant invasions under artificial light at night. Trends in Ecology & Evolution, 39, 703-705. |
[33] | Liu YJ, Huang W, Yang Q, Zheng YL, Li SP, Wu H, Ju RT, Sun Y, Ding JQ (2022) Research advances of plant invasion ecology over the past 10years. Biodiversity Science, 30, 22438. (in Chinese with English abstract) |
[刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清 (2022) 近十年植物入侵生态学重要研究进展. 生物多样性, 30, 22438.]
DOI |
|
[34] |
Liu YJ, Liu M, Xu XL, Tian YQ, Zhang Z, van Kleunen M (2018) The effects of changes in water and nitrogen availability on alien plant invasion into a stand of a native grassland species. Oecologia, 188, 441-450.
DOI PMID |
[35] |
Liu YJ, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu XL, van Kleunen M (2017) Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biology, 23, 3363-3370.
DOI PMID |
[36] | Liu YJ, Speißer B, Knop E, van Kleunen M (2022) The Matthew effect: Common species become more common and rare ones become more rare in response to artificial light at night. Global Change Biology, 28, 3674-3682. |
[37] | Liu YJ, Zhang DD, Yang LY, Dong YH, Liang GM, Philip D, Ren GW, Xu PJ, Wu KM (2021) Analysis of phototactic responses in Spodoptera frugiperda using Helicoverpa armigera as control. Journal of Integrative Agriculture, 20, 821-828. |
[38] | Lukács K, Valkó O (2021) Human-vectored seed dispersal as a threat to protected areas: Prevention, mitigation and policy. Global Ecology and Conservation, 31, e01851. |
[39] | Ma JS, Li HR (2018) The Checklist of Alien Invasive Plants in China. Higher Education Press, Beijing. (in Chinese) |
[马金双, 李惠茹 (2018) 中国外来入侵植物名录. 高等教育出版社, 北京.] | |
[40] | Maggi E, Serôdio J (2020) Artificial light at night: A new challenge in microphytobenthos research. Frontiers in Marine Science, 7, 329. |
[41] | Marques PS, Manna LR, Frauendorf TC, Zandonà E, Mazzoni R, El-Sabaawi R (2020) Urbanization can increase the invasive potential of alien species. Journal of Animal Ecology, 89, 2345-2355. |
[42] | Mazza G, Tricarico E, Genovesi P, Gherardi F (2014) Biological invaders are threats to human health: An overview. Ethology, Ecology & Evolution, 26, 112-129. |
[43] |
Meng L (2021) Green with phenology. Science, 374, 1065-1066.
DOI PMID |
[44] | Ministry of Ecology and Environment of the People’s Republic of China (2021) 2020 State of Ecology and Environment Report. (in Chinese) |
[中华人民共和国生态环境部 (2021) 2020中国生态环境状况公报.] https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202305/P020230529570623593284.pdf. (accessed on 2024-12-18) | |
[45] | Mondy N, Boisselet C, Poussineau S, Vallier F, Lengagne T, Secondi J, Romestaing C, Geay M, Puijalon S (2021) Herbivory increases on freshwater plants exposed to artificial light at night. Aquatic Botany, 175, 103447. |
[46] | Mozdzer TJ, Caplan JS (2018) Complementary responses of morphology and physiology enhance the stand-scale production of a model invasive species under elevated CO2 and nitrogen. Functional Ecology, 32, 1784-1796. |
[47] |
Murphy SM, Vyas DK, Hoffman JL, Jenck CS, Washburn BA, Hunnicutt KE, Davidson A, Andersen JM, Bennet RK, Gifford A, Herrera M, Lawler B, Lorman S, Peacock V, Walker L, Watkins E, Wilkinson L, Williams Z, Tinghitella RM (2021) Streetlights positively affect the presence of an invasive grass species. Ecology and Evolution, 11, 10320-10326.
DOI PMID |
[48] | Murphy SM, Vyas DK, Sher AA, Grenis K (2022) Light pollution affects invasive and native plant traits important to plant competition and herbivorous insects. Biological Invasions, 24, 599-602. |
[49] |
Owens ACS, Lewis SM (2018) The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecology and Evolution, 8, 11337-11358.
DOI PMID |
[50] | Poulin C, Bruyant F, Laprise MH, Cockshutt AM, Vandenhecke JMR, Huot Y (2014) The impact of light pollution on diel changes in the photophysiology of Microcystis aeruginosa. Journal of Plankton Research, 36, 286-291. |
[51] | Qin WC, Tao ZB, Wang YJ, Liu YJ, Huang W (2021) Research progress and prospect on the impacts of resource pulses on alien plant invasion. Chinese Journal of Plant Ecology, 45, 573-582. (in Chinese with English abstract) |
[秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟 (2021) 资源脉冲对外来植物入侵影响的研究进展和展望. 植物生态学报, 45, 573-582.] | |
[52] | Qu TB, Meng FY, Wang Y (2015) Species composition and flora analysis of alien invasive plants in Changchun. Chinese Journal of Ecology, 34, 907-911. (in Chinese with English abstract) |
[曲同宝, 孟繁勇, 王豫 (2015) 长春地区入侵植物种类组成及区系分析. 生态学杂志, 34, 907-911.] | |
[53] | Ratcliffe H, Kendig A, Vacek S, Carlson D, Ahlering M, Dee LE (2024) Extreme precipitation promotes invasion in managed grasslands. Ecology, 105, e4190. |
[54] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
PMID |
[55] | Sanders D, Gaston KJ (2018) How ecological communities respond to artificial light at night. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329, 394-400. |
[56] | Shan LP, Oduor AMO, Liu YJ (2023) Herbivory and elevated levels of CO2 and nutrients separately, rather than synergistically, impacted biomass production and allocation in invasive and native plant species. Global Change Biology, 29, 6741-6755. |
[57] |
Singhal RK, Kumar M, Bose B (2019) Eco-physiological responses of artificial night light pollution in plants. Russian Journal of Plant Physiology, 66, 190-202.
DOI |
[58] | Sodani R, Nandan Mishra U, Chand S, Indu, Anuragi H, Chandra K, Chauhan J, Bose B, Kumar V, Shankar Singh G, Lenka D, Kumar Singhal R (2021) Artificial Light at Night: A Global Threat to Plant Biological Rhythms and Eco-Physiological Processes. Light Pollution, Urbanization and Ecology (ed. Hufnagel L) pp.11-28. IntechOpen, Rijeka. |
[59] | Speißer B, Liu YJ, van Kleunen M (2021) Biomass responses of widely and less-widely naturalized alien plants to artificial light at night. Journal of Ecology, 109, 1819-1827. |
[60] |
van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI PMID |
[61] | Xiao L, Wang WJ, He XY, Lv HL, Wei CH, Zhou W, Zhang B (2016) Urban-rural and temporal differences of woody plants and bird species in Harbin City, northeastern China. Urban Forestry & Urban Greening, 20, 20-31. |
[62] |
Ye XH, Tang SL, Cornwell WK, Gao SQ, Huang ZY, Dong M, Cornelissen JHC (2015) Impact of land-use on carbon storage as dependent on soil texture: Evidence from a desertified dryland using repeated paired sampling design. Journal of Environmental Management, 150, 489-498.
DOI PMID |
[63] | Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX (2015) Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 21, 1567-1580. |
[64] | Zhu B, Wei CQ, Zhou H, Chen W, Siemann E, Lu XM (2025) Traits estimated when grown alone may underestimate the competitive advantage and invasiveness of exotic species. New Phytologist, 245, 2202-2213. |
[65] | Zou D, Zhou YK, Lin JT, Chen TY, Wu ZJ, Wang H (2022) Analysis of inequality of socioeconomic development on both sides of Hu Huanyong Line using nighttime light. Remote Sensing Technology and Application, 37, 929-937. (in Chinese with English abstract) |
[邹丹, 周玉科, 林金堂, 陈天宇, 吴志杰, 王洪 (2022) 利用夜间灯光分析胡焕庸线两侧社会经济发展不均衡状况. 遥感技术与应用, 37, 929-937.]
DOI |
[1] | 杨泉峰, 唐艳杰, 肖海军, 王颖, 张蓉, 欧阳芳, 魏淑花. 宁夏不同草原类型植物多样性–蝗虫–步甲级联效应及对初级生产力的影响[J]. 生物多样性, 2025, 33(6): 25021-. |
[2] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性-生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[3] | 袁敬毅, 张旭, 田镇朋, 王梓柘, 高永萍, 姚迪昭, 关宏灿, 李文楷, 刘婧, 张宏, 马勤. 结合无人机高分辨率可见光影像和激光雷达点云的城市植物群落树种组成和数量特征提取方法对比[J]. 生物多样性, 2025, 33(4): 24237-. |
[4] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[5] | 万凤鸣, 万华伟, 张志如, 高吉喜, 孙晨曦, 王永财. 草地植物多样性无人机调查的应用潜力[J]. 生物多样性, 2024, 32(3): 23381-. |
[6] | 张乃鹏, 梁洪儒, 张焱, 孙超, 陈勇, 王路路, 夏江宝, 高芳磊. 土壤类型和地下水埋深对黄河三角洲典型盐沼植物群落空间分异的影响[J]. 生物多样性, 2024, 32(2): 23370-. |
[7] | 蒋陈焜, 郁文彬, 饶广远, 黎怀成, Julien B. Bachelier, Hartmut H. Hilger, Theodor C. H. Cole. 植物系统发生海报——以演化视角介绍植物多样性的科教资料项目[J]. 生物多样性, 2024, 32(11): 24210-. |
[8] | 韩赟, 迟晓峰, 余静雅, 丁旭洁, 陈世龙, 张发起. 青海野生维管植物名录[J]. 生物多样性, 2023, 31(9): 23280-. |
[9] | 陈又生, 宋柱秋, 卫然, 罗艳, 陈文俐, 杨福生, 高连明, 徐源, 张卓欣, 付鹏程, 向春雷, 王焕冲, 郝加琛, 孟世勇, 吴磊, 李波, 于胜祥, 张树仁, 何理, 郭信强, 王文广, 童毅华, 高乞, 费文群, 曾佑派, 白琳, 金梓超, 钟星杰, 张步云, 杜思怡. 西藏维管植物多样性编目和分布数据集[J]. 生物多样性, 2023, 31(9): 23188-. |
[10] | 宋柱秋, 叶文, 董仕勇, 金梓超, 钟星杰, 王震, 张步云, 徐晔春, 陈文俐, 李世晋, 姚纲, 徐洲锋, 廖帅, 童毅华, 曾佑派, 曾云保, 陈又生. 广东省高等植物多样性编目和分布数据集[J]. 生物多样性, 2023, 31(9): 23177-. |
[11] | 梁彩群, 陈玉凯, 杨小波, 张凯, 李东海, 江悦馨, 李婧涵, 王重阳, 张顺卫, 朱子丞. 海南省野生维管植物编目和分布数据集[J]. 生物多样性, 2023, 31(6): 23067-. |
[12] | 李仕裕, 张奕奇, 邹璞, 宁祖林, 廖景平. 广东省植物园植物多样性迁地保护现状及发展建议[J]. 生物多样性, 2023, 31(6): 22647-. |
[13] | 吴浩, 余玉蓉, 王佳钰, 赵媛博, 高娅菲, 李小玲, 卜贵军, 薛丹, 吴林. 低水位增加灌木多样性和生物量但降低土壤有机碳含量: 以鄂西南贫营养泥炭地为例[J]. 生物多样性, 2023, 31(3): 22600-. |
[14] | 肖翠, 刘冰, 吴超然, 马金双, 叶建飞, 夏晓飞, 林秦文. 北京维管植物编目和分布数据集[J]. 生物多样性, 2022, 30(6): 22064-. |
[15] | 林秦文, 肖翠, 马金双. 中国外来植物数据集[J]. 生物多样性, 2022, 30(5): 22127-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn