生物多样性 ›› 2025, Vol. 33 ›› Issue (3): 24526. DOI: 10.17520/biods.2024526 cstr: 32101.14.biods.2024526
• 昆蒙框架如何在中国体制下成为主流工作目标专题 • 上一篇 下一篇
武慧1(), 俞乐1,2,*(
)(
), 杜贞容3(
), 赵强1(
), 戚文超1(
), 曹越4(
), 王金洲5(
), 申小莉6(
), 孙尧7, 马克平6,8(
)
收稿日期:
2024-12-01
接受日期:
2025-03-04
出版日期:
2025-03-20
发布日期:
2025-03-04
通讯作者:
*E-mail: leyu@tsinghua.edu.cn
基金资助:
Wu Hui1(), Yu Le1,2,*(
)(
), Du Zhenrong3(
), Zhao Qiang1(
), Qi Wenchao1(
), Cao Yue4(
), Wang Jinzhou5(
), Shen Xiaoli6(
), Sun Yao7, Ma Keping6,8(
)
Received:
2024-12-01
Accepted:
2025-03-04
Online:
2025-03-20
Published:
2025-03-04
Contact:
*E-mail: leyu@tsinghua.edu.cn
Supported by:
摘要:
为有效遏制并扭转全球生物多样性快速丧失的严峻趋势, 《生物多样性公约》第十五次缔约方大会制定并通过了《昆明-蒙特利尔全球生物多样性框架》(简称《昆蒙框架》)这一最新行动纲领, 确定了4项长期目标及23项行动目标。目前, 有效跟踪盘点《昆蒙框架》目标进展是国际关注的热点, 但仍面临全球进展不明朗、监测不及时、评价不全面等多重挑战, 亟需突破标准不一、指标众多、数据不足等技术难题。本文旨在探索基于遥感监测的《昆蒙框架》执行进展快速评估路径, 通过遥感地基数据融合、定量定性评估结合, 满足多尺度《昆蒙框架》目标快速盘点需求。本文首先指出, 现有监测框架在有效评估《昆蒙框架》目标进展方面存在较大不确定性, 因此有必要研发一套执行性更强、空间分辨率更高、更新频率更快的指标集、指数计算方法和高质量数据集, 以确保《昆蒙框架》目标得到及时、有效的跟进与盘点。其次, 本文深入分析了遥感技术在生物多样性监测中的应用, 评估了其在《昆蒙框架》目标进展评估中的可行性。在此基础上, 进一步提出了构建数据-知识-计算一体化时空智能服务框架, 以支持生态系统制图、生物多样性制图以及遥感生物多样性核心变量(RS-EBVs)研发。最后, 本文建议采用基于RS-EBVs的定量评估方法, 结合基于缔约方国家生物多样性战略和行动计划和国家报告的定性评估, 并借助人工智能技术开发《昆蒙框架》实时进展监测智能体, 实现《昆蒙框架》进展的多尺度快速评估。这一系列技术手段旨在为《昆蒙框架》进展盘点提供切实可行的支持, 为各国制定和实施生物多样性保护政策提供科学依据。
武慧, 俞乐, 杜贞容, 赵强, 戚文超, 曹越, 王金洲, 申小莉, 孙尧, 马克平 (2025) 基于遥感监测的《昆蒙框架》执行进展快速评估: 路径与展望. 生物多样性, 33, 24526. DOI: 10.17520/biods.2024526.
Wu Hui, Yu Le, Du Zhenrong, Zhao Qiang, Qi Wenchao, Cao Yue, Wang Jinzhou, Shen Xiaoli, Sun Yao, Ma Keping (2025) Rapid assessment of the Kunming-Montreal Global Biodiversity Framework implementation progress based on remote sensing monitoring: Pathway and prospects. Biodiversity Science, 33, 24526. DOI: 10.17520/biods.2024526.
图1 《昆明-蒙特利尔全球生物多样性框架》行动目标及其遥感监测可行性
Fig. 1 Action targets of the Kunming-Montreal Global Biodiversity Framework and their adequacy for remote sensing monitoring
图2 基于遥感监测的《昆明-蒙特利尔全球生物多样性框架》(KMGBF)执行进展评估流程
Fig. 2 Evaluation process of the implementation progress of the Kunming-Montreal Global Biodiversity Framework (KMGBF) based on remote sensing monitoring. LiDAR, Light detection and ranging; SAR, Synthetic aperture radar; UAV, Unmanned aerial vehicles; NBSAPs, National Biodiversity Strategies and Action Plans; NRs, National reports; RS-EBVs, Remote sensing-based essential biodiversity variables.
图3 遥感生物多样性核心变量与《昆明-蒙特利尔全球生物多样性框架》(《昆蒙框架》)目标的关系
Fig. 3 Relationship between remote sensing-based essential biodiversity variables (RS-EBVs) and the targets of the Kunming-Montreal Global Biodiversity Framework (KMGBF)
图4 《昆明-蒙特利尔全球生物多样性框架》(《昆蒙框架》)智能体Chat KMGBF工作流程。COT: 思维链; TOT: 思维树; RS-EBVs: 遥感生物多样性核心变量; API: 应用程序接口。
Fig. 4 Workflow of the Chat KMGBF intelligent agent for the Kunming Montreal Global Biodiversity Framework (KMGBF). COT, Chain-of-thought; TOT, Tree of thought; NRs, National Reports; NBSAPs, National Biodiversity Strategies and Action Plans; RS-EBVs, Remote sensing-based essential biodiversity variables; API, Application programming interface; LoRA: Low-rank adaptation; RAG: Retrieval-augmented generation.
[1] | Affinito F, Williams JM, Campbell JE, Londono MC, Gonzalez A(2024) Progress in developing and operationalizing the monitoring framework of the global biodiversity framework. Nature Ecology & Evolution, 8, 2163-2171. |
[2] | Aguirre-Gutiérrez J, Berenguer E, Menor IO, Bauman D, Corral-Rivas JJ, Nava-Miranda MG, Both S, Ndong JE, Ondo FE, Bengone NN, Mihinhou V, Dalling JW, Heineman K, Figueiredo A, González-M R, Norden N, Hurtado-M AB, González D, Salgado-Negret B, Reis SM, Farfan-Rios W, Shenkin A, Riutta T, Girardin CAJ, Moore S, Abernethy K, Asner GP, Bentley LP, Burslem DFRP, Cernusak LA, Enquist BJ, Ewers RM, Ferreira J, Jeffery KJ, Joly CA, Marimon-Junior BH, Martin RE, Morandi PS, Phillips OL, Bennett AC, Lewis SL, Quesada CA, Marimon BS, Kissling WD, Silman M, Teh YA, White LJT, Salinas N, Coomes DA, Barlow J, Adu-Bredu S, Malhi Y(2022) Functional susceptibility of tropical forests to climate change. Nature Ecology & Evolution, 6, 878-889. |
[3] | Alleaume S, Dusseux P, Thierion V, Commagnac L, Laventure S, Lang M, Féret JB, Hubert-Moy L, Luque S(2018) A generic remote sensing approach to derive operational essential biodiversity variables (EBVs) for conservation planning. Methods in Ecology & Evolution, 9, 1822-1836. |
[4] | Aubert G, Dudley N(2023) Progress on implementing the Kunming-Montreal Global Biodiversity Framework. (accessed on 2025-03-01) https://ieep.eu/wp-content/uploads/2024/01/Progress-on-implementing-the-KunmingMontreal-Global-Biodiversity-FrameworkIEEP-2023.pdf. |
[5] |
Brennan A, Naidoo R, Greenstreet L, Mehrabi Z, Ramankutty N, Kremen C(2022) Functional connectivity of the world’s protected areas. Science, 376, 1101-1104.
DOI PMID |
[6] | Brooks TM, Pimm SL, Akçakaya HR, Buchanan GM, Butchart SHM, Foden W, Hilton-Taylor C, Hoffmann M, Jenkins CN, Joppa L, Li BV, Menon V, Ocampo-Peñuela N, Rondinini C(2019) Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends in Ecology & Evolution, 34, 977-986. |
[7] | Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D(2020) Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901. |
[8] | Burgess ND, Ali N, Bedford J, Bhola N, Brooks S, Cierna A, Correa R, Harris M, Hargey A, Hughes J, McDermott-Long O, Miles L, Ravilious C, Rodrigues AR, van Soesbergen A, Sihvonen H, Seager A, Swindell L, Vukelic M, Paz Durán A, Green JMH, West C, Weatherdon LV, Hawkins F, Brooks TM, Kingston N, Butchart SHM(2024) Global metrics for terrestrial biodiversity. Annual Review of Environment and Resources, 49, 673-709. |
[9] | Callaghan CT, Borda-de-Água L, van Klink R, Rozzi R, Pereira HM(2023) Unveiling global species abundance distributions. Nature Ecology & Evolution, 7, 1600-1609. |
[10] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S(2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[11] | CBD (Convention on Biological Diversity) (2022a) Kunming-Montreal Global Biodiversity Framework. (accessed on 2025-03-01) https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf/. |
[12] | CBD (Convention on Biological Diversity) (2022b) Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework. (accessed on 2025-03-01) https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-05-en.pdf/. |
[13] | CBD (Convention on Biological Diversity) (2022c) Mechanisms for Planning, Monitoring, Reporting and Review. (accessed on 2025-03-01) https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-06-en.pdf/. |
[14] | CBD (Convention on Biological Diversity) (2024) Mechanisms for Planning, Monitoring, Reporting and Review, Including the Global Review of Collective Progress in the Implementation of the Kunming-Montreal Global Biodiversity Framework to be Conducted at the Seventeenth and Nineteenth Meetings of the Conference of the Parties. (accessed on 2025-03-01) https://www.cbd.int/doc/c/aa9c/e8b6/0c916bc02c3033d992521bfb/cop-16-l-33-en.pdf/. |
[15] | CBD (Convention on Biological Diversity) (2025) Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework. (accessed on 2025-03-01) https://www.cbd.int/doc/c/1e13/f20d/81cd8447744640bbd21e008f/cop-16-l-26-rev1-en.pdf/. |
[16] | Chaplin-Kramer R, Brauman KA, Cavender-Bares J, Díaz S, Duarte GT, Enquist BJ, Garibaldi LA, Geldmann J, Halpern BS, Hertel TW, Khoury CK, Krieger JM, Lavorel S, Mueller T, Neugarten RA, Pinto-Ledezma J, Polasky S, Purvis A, Reyes-García V, Roehrdanz PR, Shannon LJ, Shaw MR, Strassburg BBN, Tylianakis JM, Verburg PH, Visconti P, Zafra-Calvo N(2022) Conservation needs to integrate knowledge across scales. Nature Ecology & Evolution, 6, 118-119. |
[17] |
Coops NC, Kearney SP, Bolton DK, Radeloff VC(2018) Remotely-sensed productivity clusters capture global biodiversity patterns. Scientific Reports, 8, 16261.
DOI PMID |
[18] | Curd A, Chevalier M, Vasquez M, Boyé A, Firth LB, Marzloff MP, Bricheno LM, Burrows MT, Bush LE, Cordier C, Davies AJ, Green JAM, Hawkins SJ, Lima FP, Meneghesso C, Mieszkowska N, Seabra R, Dubois SF(2023) Applying landscape metrics to species distribution model predictions to characterize internal range structure and associated changes. Global Change Biology, 29, 631-647. |
[19] | Díaz-Delgado R, Cazacu C, Adamescu M(2019) Rapid assessment of ecological integrity for LTER wetland sites by using UAV multispectral mapping. Drones, 3, 3. |
[20] | Du ZR, Yu L, Arvor D, Li XY, Cao X, Zhong LH, Zhao Q, Ma XR, Wang HY, Liu XX, Zhang MJ, Xu B, Gong P(2024) Dual data- and knowledge-driven land cover mapping framework for monitoring annual and near-real-time changes. IEEE Transactions on Geoscience and Remote Sensing, 62, 4411314. |
[21] | Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, Roehrdanz PR, Thiers BM, Burger JR, Corlett RT, Couvreur TLP, Dauby G, Donoghue JC, Foden W, Lovett JC, Marquet PA, Merow C, Midgley G, Morueta-Holme N, Neves DM, Oliveira-Filho AT, Kraft NJB, Park DS, Peet RK, Pillet M, Serra-Diaz JM, Sandel B, Schildhauer M, Šímová I, Violle C, Wieringa JJ, Wiser SK, Hannah L, Svenning JC, McGill BJ(2019) The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 5, eaaz0414. |
[22] | Ford HV, Schrodt F, Zieritz A, Exton DA, van der Heijden G, Teague J, Coles T, Field R(2024) A technological biodiversity monitoring toolkit for biocredits. Journal of Applied Ecology, 61, 2007-2019. |
[23] |
Goettsch B, Hilton-Taylor C, Cruz-Piñón G, Duffy JP, Frances A, Hernández HM, Inger R, Pollock C, Schipper J, Superina M, Taylor NP, Tognelli M, Abba AM, Arias S, Arreola-Nava HJ, Baker MA, Bárcenas RT, Barrios D, Braun P, Butterworth CA, Búrquez A, Caceres F, Chazaro-Basañez M, Corral-Díaz R, del Valle Perea M, Demaio PH, Duarte de Barros WA, Durán R, Faúndez Yancas L, Felger RS, Fitz-Maurice B, Fitz-Maurice WA, Gann G, Gómez-Hinostrosa C, Gonzales-Torres LR, Griffith MP, Guerrero PC, Hammel B, Heil KD, Hernández-Oria JG, Hoffmann M, Ishiki Ishihara M, Kiesling R, Larocca J, León-de la Luz JL, Loaiza SCR, Lowry M, Machado MC, Majure LC, Martínez Ávalos JG, Martorell C, Maschinski J, Méndez E, Mittermeier RA, Nassar JM, Negrón-Ortiz V, Oakley LJ, Ortega-Baes P, Ferreira ABP, Pinkava DJ, Porter JM, Puente-Martinez R, Roque Gamarra J, Saldivia Pérez P, Sánchez Martínez E, Smith M, Sotomayor M del C JM, Stuart SN, Tapia Muñoz JL, Terrazas T, Terry M, Trevisson M, Valverde T, van Devender TR, Véliz-Pérez ME, Walter HE, Wyatt SA, Zappi D, Zavala-Hurtado JA, Gaston KJ(2015) High proportion of cactus species threatened with extinction. Nature Plants, 1, 15142.
DOI PMID |
[24] |
Grantham HS, Duncan A, Evans TD, Jones KR, Beyer HL, Schuster R, Walston J, Ray JC, Robinson JG, Callow M, Clements T, Costa HM, DeGemmis A, Elsen PR, Ervin J, Franco P, Goldman E, Goetz S, Hansen A, Hofsvang E, Jantz P, Jupiter S, Kang A, Langhammer P, Laurance WF, Lieberman S, Linkie M, Malhi Y, Maxwell S, Mendez M, Mittermeier R, Murray NJ, Possingham H, Radachowsky J, Saatchi S, Samper C, Silverman J, Shapiro A, Strassburg B, Stevens T, Stokes E, Taylor R, Tear T, Tizard R, Venter O, Visconti P, Wang S, Watson JEM(2020) Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 11, 5978.
DOI PMID |
[25] | Hansen MC, Loveland TR(2012) A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66-74. |
[26] | Hughes AC(2023a) Developing biodiversity baselines to develop and implement future conservation targets. Plants, 12, 2291. |
[27] | Hughes AC(2023b) The Post- 2020 Global Biodiversity Framework: How did we get here, and where do we go next? Integrative Conservation, 2, 1-9. |
[28] | Illarionova S, Trekin A, Ignatiev V, Oseledets I(2021) Neural-based hierarchical approach for detailed dominant forest species classification by multispectral satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1810-1820. |
[29] | IPBES (Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services) (2019) Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat, Bonn, Germany. |
[30] | Jetz W, McGeoch MA, Guralnick R, Ferrier S, Beck J, Costello MJ, Fernandez M, Geller GN, Keil P, Merow C, Meyer C, Muller-Karger FE, Pereira HM, Regan EC, Schmeller DS, Turak E(2019) Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution, 3, 539-551. |
[31] | Keith DA, Ferrer-Paris JR, Nicholson E, Bishop MJ, Polidoro BA, Ramirez-Llodra E, Tozer MG, Nel JL, Mac Nally R, Gregr EJ, Watermeyer KE, Essl F, Faber-Langendoen D, Franklin J, Lehmann CER, Etter A, Roux DJ, Stark JS, Rowland JA, Brummitt NA, Fernandez-Arcaya UC, Suthers IM, Wiser SK, Donohue I, Jackson LJ, Pennington RT, Iliffe TM, Gerovasileiou V, Giller P, Robson BJ, Pettorelli N, Andrade A, Lindgaard A, Tahvanainen T, Terauds A, Chadwick MA, Murray NJ, Moat J, Pliscoff P, Zager I, Kingsford RT(2022) A function-based typology for Earth’s ecosystems. Nature, 610, 513-518. |
[32] | Keith DA, Ferrer-Paris JR, Nicholson E, Kingsford RT(2020) The IUCN Global Ecosystem Typology 2.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups. (accessed on 2025-03-01) https://portals.iucn.org/library/sites/library/files/documents/2020-037-En.pdf/. |
[33] | Kissling WD, Ahumada JA, Bowser A, Fernandez M, Fernández N, García EA, Guralnick RP, Isaac NJB, Kelling S, Los W, McRae L, Mihoub JB, Obst M, Santamaria M, Skidmore AK, Williams KJ, Agosti D, Amariles D, Arvanitidis C, Bastin L, De Leo F, Egloff W, Elith J, Hobern D, Martin D, Pereira HM, Pesole G, Peterseil J, Saarenmaa H, Schigel D, Schmeller DS, Segata N, Turak E, Uhlir PF, Wee B, Hardisty AR(2018) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biological Reviews, 93, 600-625. |
[34] | Kuenzer C, Ottinger M, Wegmann M, Guo HD, Wang CL, Zhang JZ, Dech S, Wikelski M(2014) Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks. International Journal of Remote Sensing, 35, 6599-6647. |
[35] | Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J(2020) BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36, 1234-1240. |
[36] |
Lumbierres M, Dahal PR, Soria CD, Di Marco M, Butchart SHM, Donald PF, Rondinini C(2022) Area of habitat maps for the world’s terrestrial birds and mammals. Scientific Data, 9, 749.
DOI PMID |
[37] |
Ma KP(2023) Kunming-Montreal Global Biodiversity Framework: An important global agenda for biodiversity conservation. Biodiversity Science, 31, 23133. (in Chinese)
DOI |
[ 马克平 (2023) 《昆明-蒙特利尔全球生物多样性框架》是重要的全球生物多样性保护议程. 生物多样性, 31, 23133.]
DOI |
|
[38] | Ma KP, Shen XL, Grumbine RE, Corlett R(2017) China’s biodiversity conservation research in progress. Biological Conservation, 210, 1-2. |
[39] | Mammola S, Carmona CP, Guillerme T, Cardoso P(2021) Concepts and applications in functional diversity. Functional Ecology, 35, 1869-1885. |
[40] |
Maney C, Guaras D, Harrison J, Guizar-Coutiño A, Harfoot MBJ, Hill SLL, Burgess ND, Sutherland W(2024) National commitments to Aichi Targets and their implications for monitoring the Kunming-Montreal Global Biodiversity Framework. npj Biodiversity, 3, 6.
DOI PMID |
[41] | Mayr S, Kuenzer C, Gessner U, Klein I, Rutzinger M(2019) Validation of earth observation time-series: A review for large-area and temporally dense land surface products. Remote Sensing, 11, e2616. |
[42] | O’Connor B, Secades C, Penner J, Sonnenschein R, Skidmore A, Burgess ND, Hutton JM(2015) Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sensing in Ecology and Conservation, 1, 19-28. |
[43] | Paganini M, Leidner AK, Geller G, Turner W, Wegmann M(2016) The role of space agencies in remotely sensed essential biodiversity variables. Remote Sensing in Ecology and Conservation, 2, 132-140. |
[44] |
Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Höft R, Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M(2013) Essential biodiversity variables. Science, 339, 277-278.
DOI PMID |
[45] | Petrou ZI, Manakos I, Stathaki T(2015) Remote sensing for biodiversity monitoring: A review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodiversity and Conservation, 24, 2333-2363. |
[46] | Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W(2014) Satellite remote sensing for applied ecologists: Opportunities and challenges. Journal of Applied Ecology, 51, 839-848. |
[47] | Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E(2017) The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science Advances, 3, e1600821. |
[48] | Randin CF, Ashcroft MB, Bolliger J, Cavender-Bares J, Coops NC, Dullinger S, Dirnböck T, Eckert S, Ellis E, Fernández N, Giuliani G, Guisan A, Jetz W, Joost S, Karger D, Lembrechts J, Lenoir J, Luoto M, Morin X, Price B, Rocchini D, Schaepman M, Schmid B, Verburg P, Wilson A, Woodcock P, Yoccoz N, Payne D(2020) Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 239, 111626. |
[49] |
Ren Y, Tao SL, Hu TY, Yang HT, Guan HC, Su YJ, Cheng K, Chen MX, Wan HW, Guo QH(2022) The outlook and system construction for monitoring Essential Biodiversity Variables based on remote sensing: The case of China. Biodiversity Science, 30, 22530. (in Chinese with English abstract)
DOI |
[ 任淯, 陶胜利, 胡天宇, 杨海涛, 关宏灿, 苏艳军, 程凯, 陈梦玺, 万华伟, 郭庆华 (2022) 中国生物多样性核心监测指标遥感产品体系构建与思考. 生物多样性, 30, 22530.]
DOI |
|
[50] | Schmeller DS, Mihoub JB, Bowser A, Arvanitidis C, Costello MJ, Fernandez M, Geller GN, Hobern D, Kissling WD, Regan E, Saarenmaa H, Turak E, Isaac NJB(2017) An operational definition of essential biodiversity variables. Biodiversity and Conservation, 26, 2967-2972. |
[51] | Secades C, O’Connor B, Brown C, Walpole M(2014) Earth Observation for Biodiversity Monitoring: A Review of Current Approaches and Future Opportunities for Tracking Progress towards the Aichi Biodiversity Targets. Secretariat of the Convention on Biological Diversity, Montréal, Canada. |
[52] | Shokirov S, Jucker T, Levick SR, Manning AD, Bonnet T, Yebra M, Youngentob KN(2023) Habitat highs and lows: Using terrestrial and UAV LiDAR for modelling avian species richness and abundance in a restored woodland. Remote Sensing of Environment, 285, 113326. |
[53] | Skidmore AK, Coops NC, Neinavaz E, Ali A, Schaepman ME, Paganini M, Kissling WD, Vihervaara P, Darvishzadeh R, Feilhauer H, Fernandez M, Fernández N, Gorelick N, Geijzendorffer I, Heiden U, Heurich M, Hobern D, Holzwarth S, Muller-Karger FE, Van De Kerchove R, Lausch A, Leitão PJ, Lock MC, Mücher CA, O’Connor B, Rocchini D, Roeoesli C, Turner W, Vis JK, Wang TJ, Wegmann M, Wingate V(2021) Priority list of biodiversity metrics to observe from space. Nature Ecology & Evolution, 5, 896-906. |
[54] | Timmermans J, Kissling WD(2023) Advancing terrestrial biodiversity monitoring with satellite remote sensing in the context of the Kunming-Montreal Global Biodiversity Framework. Ecological Indicators, 154, 110773. |
[55] | Wan FM, Wan HW, Zhang ZR, Gao JX, Sun CX, Wang YC(2024) The application potential of unmanned aerial vehicle surveys in grassland plant diversity. Biodiversity Science, 32, 23381. (in Chinese with English abstract) |
[ 万凤鸣, 万华伟, 张志如, 高吉喜, 孙晨曦, 王永财 (2024) 草地植物多样性无人机调查的应用潜力. 生物多样性, 32, 23381.]
DOI |
|
[56] | Wang R, Gamon JA(2019) Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 231, 111218. |
[57] |
Wei FW, Costanza R, Dai Q, Stoeckl N, Gu X, Farber S, Nie Y, Kubiszewski I, Hu Y, Swaisgood R, Yang X, Bruford M, Chen Y, Voinov A, Qi D, Owen M, Yan L, Kenny DC, Zhang Z, Hou R, Jiang S, Liu H, Zhan X, Zhang L, Yang B, Zhao L, Zheng X, Zhou W, Wen Y, Gao H, Zhang W(2018) The value of ecosystem services from giant panda reserves. Current Biology, 28, 2174-2180.
DOI PMID |
[58] | Wei FW, Wu Q, Hu YB, Huang GP, Nie YG, Yan L(2019) Conservation metagenomics: A new branch of conservation biology. Science China: Life Sciences, 62, 168-178. |
[59] |
Wu ZJ, Zhang C, Gu XW, Duporge I, Hughey LF, Stabach JA, Skidmore AK, Hopcraft JGC, Lee SJ, Atkinson PM, McCauley DJ, Lamprey R, Ngene S, Wang T(2023) Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape. Nature Communications, 14, 3072.
DOI PMID |
[60] | WWF (World Wide Fund for Nature) (2024) Living Planet Report 2024—A System in Peril. WWF, Gland, Switzerland. |
[61] |
Xu J, Wang JZ(2023) Analysis of the main elements and implications of the Kunming-Montreal Global Biodiversity Framework. Biodiversity Science, 31, 23020. (in Chinese with English abstract)
DOI |
[ 徐靖, 王金洲 (2023) 《昆明-蒙特利尔全球生物多样性框架》主要内容及其影响. 生物多样性, 31, 23020.]
DOI |
|
[62] | Yu L, Du ZR, Dong R, Zheng J, Tu Y, Chen X, Hao P, Zhong B, Peng D, Zhao J, Li X, Yang J, Fu H, Yang G, Gong P(2022) FROM-GLC Plus: Toward near real-time and multi-resolution land cover mapping. GIScience & Remote Sensing, 59, 1026-1047. |
[63] | Yu L, Du ZR, Li X, Zhao Q, Wu H, Weise D, Yuan X, Yang Y, Cai W, Song W, Wang P, Zhao Z, Long Y, Zhang Y, Peng J, Xin X, Xu F, Shen M, Wang H, Jiao YM, Li TT, Sun ZT, Zhao YG, Fang MY, Peng DL, Wu CY, Li S, Shen XL, Ma KP, Lin GH, Luo Y(2024) Near surface camera informed agricultural land monitoring for climate smart agriculture. Climate Smart Agriculture, 1, 100008. |
[64] | Yu L, Du ZR, Li X, Zheng J, Zhao Q, Wu H, Weise D, Yang Y, Zhang Q, Li X, Ma X, Huang X(2025) Enhancing global agricultural monitoring system for climate-smart agriculture. Climate Smart Agriculture, 2, 100037. |
[1] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[2] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[3] | 刘志禹 吉鑫 隋国辉 杨定 李轩昆. 北京首都国际机场野牛草与杂草草坪无脊椎动物多样性[J]. 生物多样性, 2025, 33(4): 24456-. |
[4] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[5] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[6] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[7] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
[8] | 郭旋, 何思源, 闵庆文. 农业部门履行《生物多样性公约》的思路与途径——来自重要农业文化遗产管理的启示[J]. 生物多样性, 2025, 33(3): 24527-. |
[9] | 周志华, 金效华, 罗颖, 李迪强, 岳建兵, 刘芳, 何拓, 李希, 董晖, 罗鹏. 中国林草部门落实《昆明-蒙特利尔全球生物多样性框架》的机制、成效分析及建议[J]. 生物多样性, 2025, 33(3): 24487-. |
[10] | 苏红巧, 余得光, 牟昆仑. 国家公园与国土空间规划和用途管制制度衔接路径探讨[J]. 生物多样性, 2025, 33(3): 24570-. |
[11] | 刘立, 臧明月, 马月, 万雅琼, 胡飞龙, 卢晓强, 刘燕. 央地协同推动国家生物多样性战略和行动计划执行的措施、进展与展望[J]. 生物多样性, 2025, 33(3): 24532-. |
[12] | 王晓倩, 邓毅. 与《昆明-蒙特利尔全球生物多样性框架》衔接的中国OECMs关键问题与推进策略[J]. 生物多样性, 2025, 33(3): 24569-. |
[13] | 顾婧婧, 刘宜卓, 苏杨. 基层地方政府在完成《昆蒙框架》中的作用和难点: 基于《联合国气候变化框架公约》任务的比较[J]. 生物多样性, 2025, 33(3): 24585-. |
[14] | 田志奇, 苏杨. 环境相关国际公约的中国履约模式和在《生物多样性公约》中的应用: 从完成《昆蒙框架》目标和发挥国家公园作用的角度[J]. 生物多样性, 2025, 33(3): 24593-. |
[15] | 姜雪原, 徐嘉忆, 盛学敏, 朱源. 《中国生物多样性保护战略与行动计划(2023‒2030年)》与《昆蒙框架》的协同与差异[J]. 生物多样性, 2025, 33(3): 24575-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn