生物多样性 ›› 2024, Vol. 32 ›› Issue (5): 24072. DOI: 10.17520/biods.2024072 cstr: 32101.14.biods.2024072
• 研究报告: 植物多样性 • 上一篇
艾妍雨1,2(), 胡海霞1,2(
), 沈婷3,4(
), 莫雨轩1(
), 杞金华5(
), 宋亮1,*(
)(
)
收稿日期:
2024-03-01
接受日期:
2024-04-26
出版日期:
2024-05-20
发布日期:
2024-04-28
通讯作者:
E-mail: 基金资助:
Yanyu Ai1,2(), Haixia Hu1,2(
), Ting Shen3,4(
), Yuxuan Mo1(
), Jinhua Qi5(
), Liang Song1,*(
)(
)
Received:
2024-03-01
Accepted:
2024-04-26
Online:
2024-05-20
Published:
2024-04-28
Contact:
E-mail: 摘要:
附生维管植物对维持森林生态系统的生物多样性、碳储量、生态水文和养分通量有重要贡献。评估附生植物的多样性格局可以为其群落构建机制以及全球变化背景下附生植物的保护和资源利用提供依据。本文以哀牢山中山湿性常绿阔叶林1.44 ha塔吊样地中的附生维管植物为研究对象, 综合分析了6种优势乔木宿主植株上附生维管植物的物种丰富度(S)、系统发育多样性(PD)、系统发育结构及其与宿主胸径、树高和物种的相关性。结果表明: 哀牢山中山湿性常绿阔叶林311株优势乔木上共调查到26科44属62种附生维管植物。附生植物物种丰富度和系统发育多样性与宿主胸径和树高均呈极显著正相关(P < 0.001)。标准化的系统发育多样性(SES.PD)与附生植物物种丰富度无显著相关关系, 随宿主胸径的增加而显著增加(P < 0.05), 随宿主树高的增加而显著减小(P < 0.05)。折柄茶(Stewartia pteropetiolata)上附生植物的物种丰富度与PD极显著低于其他宿主物种(P < 0.001), 但6种宿主物种上附生植物的SES.PD无显著差异(P > 0.05)。变色锥(Castanopsis wattii)和多花含笑(Michelia floribunda)上的附生植物系统发育结构呈发散状态, 木果柯(Lithocarpus xylocarpus)和折柄茶上的附生植物系统发育结构呈聚集状态, 其余宿主上的附生植物系统发育结构不明显。综上所述, 宿主特征包括宿主大小和物种的差异是维持附生维管植物多样性格局的关键, 这一结果可为今后从多维度、多角度解析附生维管植物多样性的格局及其维持机制奠定坚实基础。
艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮 (2024) 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例. 生物多样性, 32, 24072. DOI: 10.17520/biods.2024072.
Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song (2024) Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains. Biodiversity Science, 32, 24072. DOI: 10.17520/biods.2024072.
图1 附生植物物种丰富度与宿主特征之间的相关关系。(a)负二项广义线性模型预测的附生植物物种丰富度与宿主胸径之间的相关关系(阴影部分表示95%置信区间); (b)负二项广义线性模型预测的附生植物物种丰富度与宿主树高之间的相关关系(阴影部分表示95%置信区间); (c) 6种宿主物种上附生植物物种丰富度的差异, 不同小写字母表示差异显著(P < 0.001)。
Fig. 1 The correlation between epiphytic species richness and host characteristics. (a) The correlation between epiphytic species richness and DBH of host tree predicted by the negative binomial generalized linear model (shaded area represents 95% confidence intervals for the fitted line); (b) The correlation between epiphytic species richness and height of host tree predicted by the negative binomial generalized linear model (shaded area represents 95% confidence intervals for the fitted line); (c) Multiple comparisons of the epiphyte species richness on six host tree species, different lower-case letters indicate significant difference (P < 0.001). CW, Castanopsis wattii; LH, Lithocarpus hancei; LX, Lithocarpus xylocarpus; MF, Michelia floribunda; SN, Schima noronhae; SP, Stewartia pteropetiolata.
图2 哀牢山林冠吊塔样地附生植物在不同宿主物种上的非度量多维尺度排序(NMDS)图
Fig. 2 Non-metric multidimensional scaling (NMDS) ordination of vascular epiphyte communities on host tree species in canopy crane plot of Ailao Mountains. CW, Castanopsis wattii; LH, Lithocarpus hancei; LX, Lithocarpus xylocarpus; MF, Michelia floribunda; SN, Schima noronhae; SP, Stewartia pteropetiolata.
宿主特征 Host characteristics | df | 总方差 Sum of squares | R2 | F | P |
---|---|---|---|---|---|
胸径 DBH | 1 | 8.088 | 0.1036 | 39.681 | 0.001 |
树高 Height | 1 | 2.424 | 0.0311 | 11.891 | 0.001 |
宿主物种 Host tree species | 5 | 5.797 | 0.0743 | 5.688 | 0.001 |
表1 通过置换多元方差分析方法分析宿主胸径、树高以及宿主物种对附生维管植物物种组成的影响
Table 1 Effects of host DBH, height and host tree species on vascular epiphyte species composition with permutational multivariate analysis of variance
宿主特征 Host characteristics | df | 总方差 Sum of squares | R2 | F | P |
---|---|---|---|---|---|
胸径 DBH | 1 | 8.088 | 0.1036 | 39.681 | 0.001 |
树高 Height | 1 | 2.424 | 0.0311 | 11.891 | 0.001 |
宿主物种 Host tree species | 5 | 5.797 | 0.0743 | 5.688 | 0.001 |
图3 附生维管植物系统发育多样性与宿主特征之间的相关关系。(a)和(d)分别预测了附生植物系统发育多样性(PD)、标准化的系统发育多样性(SES.PD)与宿主胸径之间的相关关系, 阴影部分表示95%置信区间; (b)和(e)分别预测了附生植物PD、 SES.PD与宿主树高之间的相关关系, 阴影部分表示95%置信区间; (c)和(f)分别指6种宿主上的附生植物PD与SES.PD的多重比较, 图中不同小写字母表示差异显著(P < 0.001)。
Fig. 3 The correlation between epiphytic phylogenetic diversity and host characteristics. (a) and (d) Correlations of epiphytic phylogenetic diversity index (PD) and standard phylogenetic diversity index (SES.PD) with host tree DBH, respectively; (b) and (e) Correlations of epiphytic PD and SES.PD with host tree height; (c) and (f) Comparisons of the epiphyte PD and SES.PD on six host species. The shaded area on (a), (b), (d) and (e) represent 95% confidence intervals for the fitted line as predicted by the linear model; different lower-case letters on (c) and (f) indicate significant difference (P < 0.001). CW, Castanopsis wattii; LH, Lithocarpus hancei; LX, Lithocarpus xylocarpus; MF, Michelia floribunda; SN, Schima noronhae; SP, Stewartia pteropetiolata.
S | PD | SES.PD | NRI | |
---|---|---|---|---|
PD | 0.9275*** | |||
SES.PD | -0.0949 | 0.2640*** | ||
NRI | -0.0543 | -0.2791*** | -0.8146*** | |
NTI | 0.0627 | -0.1795** | -0.7620*** | 0.3676*** |
表2 附生维管植物物种多样性指数与系统发育指数之间Spearman相关性分析
Table 2 Spearman correlation analysis between taxonomic and phylogenetic indices of vascular epiphytes
S | PD | SES.PD | NRI | |
---|---|---|---|---|
PD | 0.9275*** | |||
SES.PD | -0.0949 | 0.2640*** | ||
NRI | -0.0543 | -0.2791*** | -0.8146*** | |
NTI | 0.0627 | -0.1795** | -0.7620*** | 0.3676*** |
图4 附生植物系统发育结构与宿主特征之间的Spearman相关性分析。(a)附生植物净亲缘关系指数(NRI)与宿主胸径间的Spearman相关性; (b)附生植物最近亲缘关系指数(NTI)与宿主胸径间的Spearman相关性; (c)附生植物NRI与宿主树高间的Spearman相关性; (d)附生植物NTI与宿主树高间的Spearman相关性; (e) 6种宿主物种上附生植物的系统发育结构。
Fig. 4 Spearman correlation between epiphytic phylogenetic structure and host characteristics. (a) Spearman correlation analysis between net relatedness index (NRI) of epiphyte and DBH of the host tree; (b) Spearman correlation analysis between nearest taxon index (NTI) of epiphyte and DBH of the host tree; (c) Spearman correlation analysis between NRI of epiphyte and height of the host tree; (d) Spearman correlation analysis between NTI of epiphyte and height of the host tree; (e) Phylogenetic structure of epiphytes on six host tree species. CW, Castanopsis wattii; LH, Lithocarpus hancei; LX, Lithocarpus xylocarpus; MF, Michelia floribunda; SN, Schima noronhae; SP, Stewartia pteropetiolata.
[1] | Adhikari YP, Fischer A, Fischer HS (2012) Micro-site conditions of epiphytic orchids in a human impact gradient in Kathmandu valley, Nepal. Journal of Mountain Science, 9, 331-342. |
[2] | Aguirre A, Guevara R, García M, López JC (2010) Fate of epiphytes on phorophytes with different architectural characteristics along the perturbation gradient of Sabal mexicana forests in Veracruz, Mexico. Journal of Vegetation Science, 21, 6-15. |
[3] | Ai YY, Liu Q, Hu HX, Shen T, Mo YX, Wu XF, Li JL, Dossa GGO, Song L (2023) Terrestrial and epiphytic orchids exhibit different diversity and distribution patterns along an elevation gradient of Mt. Victoria, Myanmar. Global Ecology and Conservation, 42, e02408. |
[4] | Benzing DH (1990) Vascular Epiphytes:General Biology and Associated Biota. Cambridge University Press, Cambridge. |
[5] |
Callaway RM, Reinhart KO, Moore GW, Moore DJ, Pennings SC (2002) Epiphyte host preferences and host traits: Mechanisms for species-specific interactions. Oecologia, 132, 221-230.
DOI PMID |
[6] |
Chen B, Jiang L, Xie ZY, Li YD, Li JX, Li MJ, Wei CS, Xing C, Liu JF, He ZS (2021) Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamii natural forest. Biodiversity Science, 29, 439-448. (in Chinese with English abstract)
DOI |
[陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声 (2021) 格氏栲天然林林窗植物物种多样性与系统发育多样性. 生物多样性, 29, 439-448.]
DOI |
|
[7] | Chen Q, Lu HZ, Liu WY, Wu Y, Song L, Li S (2019) Obligate to facultative shift of two epiphytic Lepisorus species during subtropical forest degradation: Insights from functional traits. Forest Ecology and Management, 435, 66-76. |
[8] | Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biology Conservation, 61, 1-10. |
[9] | Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227. |
[10] | Gastauer M, Thiele J, Porembski S, Neri AV (2020) How do altitude and soil properties influence the taxonomic and phylogenetic structure and diversity of Brazilian páramo vegetation? Journal of Mountain Science, 17, 1045-1057. |
[11] | Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29, 600-614. |
[12] | Hardy OJ, Senterre B (2007) Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. Journal of Ecology, 95, 493-506. |
[13] | Hirata A, Kamijo T, Saito S (2009) Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest. Plant Ecology, 201, 247-254. |
[14] | Hu HH, Ye JF, Liu B, Mao LF, Smith SA, Barrett RL, Soltis PS, Soltis DE, Chen ZD, Lu LM (2022) Temporal and spatial comparisons of angiosperm diversity between eastern Asia and North America. National Science Review, 9, nwab199. |
[15] | Hu Y, Wang HC, Jia HP, Pen MDJ, Liu NA, Wei JJ, Zhou BY (2022) Ecological niche and interspecific association of plant communities in alpine desertification grasslands: A case study of Qinghai Lake Basin. Plants (Basel), 11, 2724. |
[16] | Huang JB, Liu WY, Li S, Song L, Lu HZ, Shi XM, Chen X, Hu T, Liu S, Liu T (2019) Ecological stoichiometry of the epiphyte community in a subtropical forest canopy. Ecology and Evolution, 9, 14394-14406. |
[17] |
Kembel SW (2009) Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests. Ecology Letters, 12, 949-960.
DOI PMID |
[18] | Li JJ, Meng QW, Song XQ (2017) Epiphytic characteristics of Oxystophyllum changjiangense (Orchidaceae) in Bawangling National Nature Reserve, Hainan, China. Journal of Tropical Biology, 8(1), 86-91. (in Chinese with English abstract) |
[李静静, 孟千万, 宋希强 (2017) 海南霸王岭国家自然保护区拟石斛的附生特性. 热带生物学报, 8(1), 86-91.] | |
[19] |
Li S, Liu WY, Wang LS, Yang GP, Li DW (2007) Species diversity and distribution of epiphytic lichens in the primary and secondary forests in Ailao Mountain, Yunnan. Biodiversity Science, 15, 445-455. (in Chinese with English abstract)
DOI |
[李苏, 刘文耀, 王立松, 杨国平, 李达文 (2007) 云南哀牢山原生林及次生林群落附生地衣物种多样性与分布. 生物多样性, 15, 445-455.]
DOI |
|
[20] | Li SP, Cadotte MW, Meiners SJ, Hua ZS, Jiang L, Shu WS, Holyoak M (2015) Species colonisation, not competitive exclusion, drives community overdispersion over long-term succession. Ecology Letters, 18, 964-973. |
[21] | Lin HY, Sun M, Hao YJ, Li DJ, Gitzendanner MA, Fu CX, Soltis DE, Soltis PS, Zhao YP (2023) Phylogenetic diversity of eastern Asia-eastern North America disjunct plants is mainly associated with divergence time. Plant Diversity, 45, 27-35. |
[22] | Liu WY, Ma WZ, Yang LP (2006) Advances in ecological studies on epiphytes in forest canopies. Journal of Plant Ecology (Chinese Version), 30, 522-533. (in Chinese with English abstract) |
[刘文耀, 马文章, 杨礼攀 (2006) 林冠附生植物生态学研究进展. 植物生态学报, 30, 522-533.]
DOI |
|
[23] |
Ma WZ, Liu WY, Yang LP, Yang GP (2008) Edge effects on epiphytes in montane moist evergreen broad-leaved forest. Biodiversity Science, 16, 245-254. (in Chinese with English abstract)
DOI |
[马文章, 刘文耀, 杨礼攀, 杨国平 (2008) 边缘效应对山地湿性常绿阔叶林附生植物的影响. 生物多样性, 16, 245-254.]
DOI |
|
[24] |
Mastrogianni A, Kallimanis AS, Chytrý M, Tsiripidis I (2019) Phylogenetic diversity patterns in forests of a putative refugial area in Greece: A community level analysis. Forest Ecology and Management, 446, 226-237.
DOI |
[25] | Mehltreter K, Flores-Palacios A, García-Franco JG (2005) Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. Journal of Tropical Ecology, 21, 651-660. |
[26] | Mendieta-Leiva G, Zotz G (2015) A conceptual framework for the analysis of vascular epiphyte assemblages. Perspectives in Plant Ecology, Evolution and Systematics, 17, 510-521. |
[27] | Murakami M, Nunes Ramos F, Durand M, Ashton R, Batke SP (2022) Quantification and variation of microclimatic variables within tree canopies-considerations for epiphyte research. Frontiers in Forests and Global Change, 5, 828725. |
[28] | Ortega-Solís G, Díaz I, Mellado-Mansilla D, Tello F, Moreno R, Tejo C (2017) Ecosystem engineering by Fascicularia bicolor in the canopy of the South-American temperate rainforest. Forest Ecology and Management, 400, 417-428. |
[29] | Pereira IS, Rezende VL, Meira-Neto JAA, Clappe S, Eisenlohr PV (2021) Phylogenetic structure as a predictive component of beta diversity: Lessons from a comprehensive Neotropical biogeographic transition. Perspectives in Plant Ecology, Evolution and Systematics, 49, 125602. |
[30] | Pie MR, Caron FS, Dallimore T, Einzmann H, Hietz P, Kessler M, Ramos FN, Elias JPC, Kreft H, Krömer T, Higuita MJC, Zuleta D, Machado G, de Gasper AL, Zotz G, Mendieta-Leiva G, Jimenez-Lopez DA, Mendes AF, Brancalion P, Mortara S, Blum CT, Irume MV, Martínez-Meléndez NN, Benavides AM, Boelter CR, Batke S (2023) Phylogenetic diversity and the structure of host-epiphyte interactions across the Neotropics. PeerJ, 11, e15500. |
[31] | Purschke O, Schmid BC, Sykes MT, Poschlod P, Michalski SG, Durka W, Kühn I, Winter M, Prentice HC, Fridley J (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. Journal of Ecology, 101, 857-866. |
[32] | Qian H, Deng T, Jin Y, Mao LF, Zhao D, Ricklefs RE (2019) Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proceedings of the National Academy of Sciences, USA, 116, 23192-23201. |
[33] | R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/. (accessed on 2024-01-02) |
[34] | Rasmussen HN, Rasmussen FN (2018) The epiphytic habitat on a living host: Reflections on the orchid-tree relationship. Botanical Journal of the Linnean Society, 186, 456-472. |
[35] | Richards JH (2021) Assessing the strength of climate and land-use influences on montane epiphyte communities. Conservation Biology, 35, 1496-1506. |
[36] | Richards JH, Luna IMT, Waller DM (2020) Tree longevity drives conservation value of shade coffee farms for vascular epiphytes. Agriculture Ecosystems & Environment, 301, 107025. |
[37] |
Ricklefs RE (1987) Community diversity: Relative roles of local and regional processes. Science, 235, 167-171.
PMID |
[38] | Shen T, Corlett RT, Collart F, Kasprzyk T, Guo XL, Patiño J, Su Y, Hardy OJ, Ma WZ, Wang J, Wei YM, Mouton L, Li Y, Song L, Vanderpoorten A (2022) Microclimatic variation in tropical canopies: A glimpse into the processes of community assembly in epiphytic bryophyte communities. Journal of Ecology, 110, 3023-3038. |
[39] | Shrestha N, Su XY, Xu XT, Wang ZH (2018) The drivers of high Rhododendron diversity in south-west China: Does seasonality matter? Journal of Biogeography, 45, 438-447. |
[40] | Song L, Liu WY (2013) Effects of human activities on forest canopy: A review of the 6th International Congress on Forest Canopy. Acta Ecologica Sinica, 33, 2632-2635. (in Chinese) |
[宋亮, 刘文耀 (2013) 人类活动对森林林冠的影响——第六届国际林冠学大会述评. 生态学报, 33, 2632-2635.] | |
[41] | Song L, Liu WY, Ma WZ, Tan ZH (2011) Bole epiphytic bryophytes on Lithocarpus xylocarpus (Kurz) Markgr. in the Ailao Mountains, SW China. Ecological Research, 26, 351-363. |
[42] | Stegen JC, Lin XJ, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6, 1653-1664. |
[43] |
Tay JYL, Zotz G, Einzmann HJR (2023) Smoothing out the misconceptions of the role of bark roughness in vascular epiphyte attachment. New Phytologist, 238, 983-994.
DOI PMID |
[44] |
Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews of the Cambridge Philosophical Society, 92, 698-715.
DOI PMID |
[45] | Van Stan JT II, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Science of the Total Environment, 536, 813-824. |
[46] | Wagner K, Mendieta-Leiva G, Zotz G (2015) Host specificity in vascular epiphytes: A review of methodology, empirical evidence and potential mechanisms. AoB Plants, 7, plu092. |
[47] | Wang Q, Guan WB, Wong MHG, Ranjitkar S, Sun WN, Pan Y, El-Kassaby YA, Shen LX (2017) Tree size predicts vascular epiphytic richness of traditional cultivated tea plantations in southwestern China. Global Ecology and Conservation, 10, 147-153. |
[48] | Wang ZH, Fang JY, Tang ZY, Lin X (2012) Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography, 35, 1124-1133. |
[49] | Wang ZH, Tang ZY, Fang JY (2009) The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17, 613-624. (in Chinese with English abstract) |
[王志恒, 唐志尧, 方精云 (2009) 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.]
DOI |
|
[50] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[51] | Woods CL, Cardelús CL, DeWalt SJ (2015) Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. Journal of Ecology, 103, 421-430. |
[52] | Wu ZY (1983) Research of Forest Ecosystem on Ailao Mountains, Yunnan. Yunnan Science and Technology Press, Kunming. (in Chinese) |
[吴征镒 (1983) 云南哀牢山森林生态系统研究. 云南科技出版社, 昆明.] | |
[53] | Xu CD, Li XL, Feng JM (2011) Relationships between epiphyte ferns species diversity and their phorophytes in Mt. Ailao National Nature Reserve. Chinese Journal of Ecology, 30, 1858-1862. (in Chinese with English abstract) |
[徐成东, 李雪玲, 冯建孟 (2011) 云南哀牢山国家级自然保护区附生蕨类植物的多样性与附载植物的关系. 生态学杂志, 30, 1858-1862.] | |
[54] | Xu HQ, Liu WY (2005) Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan. Biodiversity Science, 13, 137-147. (in Chinese with English abstract) |
[徐海清, 刘文耀 (2005) 云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布. 生物多样性, 13, 137-147.]
DOI |
|
[55] | Yao ZL, Yang X, Wang B, Shao XN, Wen HD, Deng Y, Zhang ZM, Cao M, Lin LX (2023) Multidimensional beta-diversity across local and regional scales in a Chinese subtropical forest: The role of forest structure. Ecology and Evolution, 13, e10607. |
[56] |
Zarate-García AM, Noguera-Savelli E, Andrade-Canto SB, Zavaleta-Mancera HA, Gauthier A, Alatorre-Cobos F (2020) Bark water storage capacity influences epiphytic orchid preference for host trees. American Journal of Botany, 107, 726-734.
DOI PMID |
[57] | Zhao MX, Geekiyanage N, Xu JC, Khin MM, Nurdiana DR, Paudel E, Harrison RD (2015) Structure of the epiphyte community in a tropical montane forest in SW China. PLoS ONE, 10, 19. |
[58] | Zhao DX, Wang C, Sun ZK, Hao ZZ (2020) Epiphytic bryophyte diversity and its influencing factors. Acta Ecologica Sinica, 40, 2523-2532. (in Chinese with English abstract) |
[赵德先, 王成, 孙振凯, 郝泽周 (2020) 树附生苔藓植物多样性及其影响因素. 生态学报, 40, 2523-2532.] | |
[59] | Zhu H, Yan LC (2009) List of Seed Plants in the Mts. Ailao of Yunnan Province, China. Yunnan Science and Technology Press, Kunming. (in Chinese) |
[朱华, 闫丽春 (2009) 云南哀牢山种子植物. 云南科技出版社, 昆明.] | |
[60] | Zotz G, Weigelt P, Kessler M, Kreft H, Taylor A (2021) EpiList 1.0: A global checklist of vascular epiphytes. Ecology, 102, e03326. |
[1] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[2] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[3] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[4] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[5] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[6] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[7] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[8] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[9] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[10] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[11] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[12] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[13] | 吕燕文, 王子韵, 肖钰, 何梓晗, 吴超, 胡新生. 谱系分选理论与检测方法的研究进展[J]. 生物多样性, 2024, 32(4): 23400-. |
[14] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[15] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn