生物多样性 ›› 2023, Vol. 31 ›› Issue (9): 23130. DOI: 10.17520/biods.2023130
牛永杰1, 马全会1, 朱玉2,*(), 刘海荣1, 吕佳乐3, 邹元春2, 姜明2
收稿日期:
2023-04-24
接受日期:
2023-08-30
出版日期:
2023-09-20
发布日期:
2023-10-12
通讯作者:
*E-mail: zhuyu@iga.ac.cn
基金资助:
Yongjie Niu1, Quanhui Ma1, Yu Zhu2,*(), Hairong Liu1, Jiale Lü3, Yuanchun Zou2, Ming Jiang2
Received:
2023-04-24
Accepted:
2023-08-30
Online:
2023-09-20
Published:
2023-10-12
Contact:
*E-mail: zhuyu@iga.ac.cn
摘要:
昆虫是草地中数量和种类最丰富的生物类群之一, 占据食物网的不同营养级, 具有重要的生态服务功能。然而, 全球范围内昆虫数量和多样性持续降低, 对生态安全构成了潜在威胁。作为全球变化的主要组分, 不断加剧的氮沉降导致植物多样性下降, 但其对昆虫多样性的影响及机制尚不明确。由此, 本文梳理了近年来国内外相关研究, 发现氮沉降可以对昆虫种群数量和多样性产生正向、负向或中性影响, 其作用方向主要依赖于氮沉降持续的时间和强度、不同昆虫类群和草地类型。氮沉降能够通过改变植物多样性、植物生物量、植物营养、群落结构、微环境等多种途径影响昆虫的食物资源、生境适宜性以及种间相互作用, 进而对昆虫群落产生影响。未来从研究方法上应考虑氮沉降与其他全球变化因子的交互作用以及更大时空尺度的实验研究, 从研究内容上应加强氮沉降对草地昆虫食物网和多营养级关系作用的理解, 从研究机理上应重视昆虫关键功能性状对氮沉降的响应。本文有益于深入理解氮沉降对草地昆虫群落的作用规律及其调控机制, 并为全球变化背景下草地昆虫多样性的保护提供理论指导。
牛永杰, 马全会, 朱玉, 刘海荣, 吕佳乐, 邹元春, 姜明 (2023) 氮沉降对草地昆虫多样性影响的研究进展. 生物多样性, 31, 23130. DOI: 10.17520/biods.2023130.
Yongjie Niu, Quanhui Ma, Yu Zhu, Hairong Liu, Jiale Lü, Yuanchun Zou, Ming Jiang (2023) Research progress on the impact of nitrogen deposition on grassland insect diversity. Biodiversity Science, 31, 23130. DOI: 10.17520/biods.2023130.
[1] | Ackerman D, Millet DB, Chen X (2019) Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[2] |
Altfeld L, Stiling P (2009) Effects of aphid-tending Argentine ants, nitrogen enrichment and early-season herbivory on insects hosted by a coastal shrub. Biological Invasions, 11, 183-191.
DOI URL |
[3] |
Aranda R, Graciolli G (2015) Spatial-temporal distribution of the Hymenoptera in the Brazilian Savanna and the effects of habitat heterogeneity on these patterns. Journal of Insect Conservation, 19, 1173-1187.
DOI URL |
[4] |
Asmus A, Koltz A, McLaren J, Shaver GR, Gough L (2018) Long-term nutrient addition alters arthropod community composition but does not increase total biomass or abundance. Oikos, 127, 460-471.
DOI URL |
[5] |
Basset Y, Lamarre GPA (2019) Toward a world that values insects. Science, 364, 1230-1231.
DOI PMID |
[6] | Belovsky GE, Slade JB (2000) Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences, USA, 97, 14412-14417. |
[7] |
Bernaschini ML, Valladares G, Salvo A (2020) Edge effects on insect-plant food webs: Assessing the influence of geographical orientation and microclimatic conditions. Ecological Entomology, 45, 806-820.
DOI URL |
[8] |
Borer ET, Stevens CJ (2022) Nitrogen deposition and climate: An integrated synthesis. Trends in Ecology & Evolution, 37, 541-552.
DOI URL |
[9] |
Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767-770.
DOI |
[10] |
Braswell LR, Reisig DD, Sorenson CE, Collins GD (2019) Helicoverpa zea (Lepidoptera: Noctuidae) preference for plant structures, and their location, within Bt cotton under different nitrogen and irrigation regimes. Journal of Economic Entomology, 112, 1741-1751.
DOI PMID |
[11] |
Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32, 831-849.
PMID |
[12] |
Cease AJ, Elser JJ, Ford CF, Hao SG, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 335, 467-469.
DOI PMID |
[13] | Chang XN, Gao HJ, Chen FJ, Zhai BP (2008) Effects of environmental moisture and precipitation on insects: A review. Chinese Journal of Ecology, 27, 619-625. (in Chinese with English abstract) |
[常晓娜, 高慧璟, 陈法军, 翟保平 (2008) 环境湿度和降雨对昆虫的影响. 生态学杂志, 27, 619-625.] | |
[14] | Chen Y, Li YQ, Wang XY, Niu YY (2021) Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China. Acta Ecologica Sinica, 41, 4213-4225. (in Chinese with English abstract) |
[陈云, 李玉强, 王旭洋, 牛亚毅 (2021) 中国典型生态脆弱区生态化学计量学研究进展. 生态学报, 41, 4213-4225.] | |
[15] |
Chen YG, Olson DM, Ruberson JR (2010) Effects of nitrogen fertilization on tritrophic interactions. Arthropod-Plant Interactions, 4, 81-94.
DOI URL |
[16] |
Cuesta D, Taboada A, Calvo L, Salgado JM (2008) Short- and medium-term effects of experimental nitrogen fertilization on arthropods associated with Calluna vulgaris heathlands in north-west Spain. Environmental Pollution, 152, 394-402.
PMID |
[17] |
Cuevas-Reyes P, De Oliveira-Ker FT, Fernandes GW, Bustamante M (2011) Abundance of gall-inducing insect species in sclerophyllous savanna: Understanding the importance of soil fertility using an experimental approach. Journal of Tropical Ecology, 27, 631-640.
DOI URL |
[18] |
David TI, Storkey J, Stevens CJ (2019) Understanding how changing soil nitrogen affects plant-pollinator interactions. Arthropod-Plant Interactions, 13, 671-684.
DOI |
[19] |
de Sassi C, Lewis OT, Tylianakis JM (2012) Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community. Ecology, 93, 1892-1901.
PMID |
[20] | de Sassi C, Tylianakis JM (2012) Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS ONE, 7, e40557. |
[21] |
Galloway JN, Schlesinger WH, Levy H II, Michaels A, Schnoor JL (1995) Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles, 9, 235-252.
DOI URL |
[22] |
González AL, Céréghino R, Dézerald O, Farjalla VF, Leroy C, Richardson BA, Richardson MJ, Romero GQ, Srivastava DS (2018) Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Functional Ecology, 32, 2448-2463.
DOI URL |
[23] |
Goulding KWT, Bailey NJ, Bradbury NJ, Hargreaves P, Howe M, Murphy DV, Poulton PR, Willison TW (1998) Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49-58.
DOI URL |
[24] |
Gratton C, Denno RF (2003) Seasonal shift from bottom-up to top-down impact in phytophagous insect populations. Oecologia, 134, 487-495.
PMID |
[25] |
Grinath JB (2021) Chronic, low-level nitrogen deposition enhances abundances of ant-protected herbivores inhabiting an imperiled foundation species. Acta Oecologica, 110, 103706.
DOI URL |
[26] |
Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecology Letters, 12, 1029-1039.
DOI PMID |
[27] |
Haddad NM, Haarstad J, Tilman D (2000) The effects of long-term nitrogen loading on grassland insect communities. Oecologia, 124, 73-84.
DOI PMID |
[28] | Han QF, Li YY, Peng KB, Li CF, Huang XD, Xu WQ (2021) Effects of atmospheric nitrogen deposition on net primary productivity of grassland ecosystem in Central Asia. Acta Ecologica Sinica, 41, 8545-8555. (in Chinese with English abstract) |
[韩其飞, 李莹莹, 彭开兵, 李超凡, 黄晓东, 许文强 (2021) 大气氮沉降对中亚草地生态系统净初级生产力的影响. 生态学报, 41, 8545-8555.] | |
[29] |
Hancock C, Wäschke N, Schumacher U, Linsenmair KE, Meiners T, Obermaier E (2013) Fertilizer application decreases insect abundance on Plantago lanceolata: A large-scale experiment in three geographic regions. Arthropod-Plant Interactions, 7, 147-158.
DOI URL |
[30] |
Holmes LA, Vanlaerhoven SL, Tomberlin JK (2012) Relative humidity effects on the life history of Hermetia illucens (Diptera: Stratiomyidae). Environmental Entomology, 41, 971-978.
DOI URL |
[31] |
Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR (2008) Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 336-349.
DOI PMID |
[32] |
Huberty AF, Denno RF (2006) Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia, 149, 444-455.
PMID |
[33] | Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, USA, 110, 11911-11916. |
[34] |
Jerrentrup JS, Wrage-Mönnig N, Röver KU, Isselstein J (2014) Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. Journal of Applied Ecology, 51, 968-977.
DOI URL |
[35] |
Joern A, Laws AN (2013) Ecological mechanisms underlying arthropod species diversity in grasslands. Annual Review of Entomology, 58, 19-36.
DOI PMID |
[36] |
Keddy PA (1984) Plant zonation on lakeshores in Nova Scotia: A test of the resource specialization hypothesis. Journal of Ecology, 72, 797-808.
DOI URL |
[37] |
Klop E, Omon B, WallisDeVries MF (2015) Impact of nitrogen deposition on larval habitats: The case of the Wall Brown butterfly Lasiommata megera. Journal of Insect Conservation, 19, 393-402.
DOI URL |
[38] |
Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology, 28, 23-39.
DOI URL |
[39] |
Leuven RSEW, Oyen FGF (1987) Impact of acidification and eutrophication on the distribution of fish species in shallow and lentic soft waters of the Netherlands: An historical perspective. Journal of Fish Biology, 31, 753-774.
DOI URL |
[40] |
Li FR, Dudley TL, Chen BM, Chang XY, Liang LY, Peng SL (2016) Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis. Acta Oecologica, 77, 160-167.
DOI URL |
[41] | Li JD, Fang JY (2017) Grassland Ecosystem Security and Food Safety Strategy in China (Vol. 3): Ecological Functions of Grasslands in China. Science Press, Beijing. (in Chinese) |
[李建东, 方精云 (2017) 中国草地生态保障与食物安全战略研究(第三卷): 中国草原的生态功能研究. 科学出版社, 北京.] | |
[42] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI |
[43] |
Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. BioScience, 56, 311-323.
DOI URL |
[44] |
Ma QH, Li YB, Zhu Y, Liu XD, Yu HY, Li L, Qi M, Sun HR, Yin ZT, Wang YH, Zhang F, Zhou GS, Xu ZZ (2022) Precipitation variations, rather than N deposition, determine plant ecophysiological traits in a desert steppe in Northern China. Ecological Indicators, 141, 109144.
DOI URL |
[45] |
Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119-161.
DOI URL |
[46] | Meza-Lopez MM, Mooney KA, Thompson AL, Ho NK, Pratt JD (2018) A test for clinal variation in Artemisia californica and associated arthropod responses to nitrogen addition. PLoS ONE, 13, e0191997. |
[47] | Murphy SM, Wimp GM, Lewis D, Denno RF (2012) Nutrient presses and pulses differentially impact plants, herbivores, detritivores and their natural enemies. PLoS ONE, 7, e43929. |
[48] |
Nessel MP, Konnovitch T, Romero GQ, González AL (2021) Nitrogen and phosphorus enrichment cause declines in invertebrate populations: A global meta-analysis. Biological Reviews, 96, 2617-2637.
DOI URL |
[49] |
Nijssen ME, WallisDeVries MF, Siepel H (2017) Pathways for the effects of increased nitrogen deposition on fauna. Biological Conservation, 212, 423-431.
DOI URL |
[50] |
Öckinger E, Hammarstedt O, Nilsson SG, Smith HG (2006) The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biological Conservation, 128, 564-573.
DOI URL |
[51] |
Økland J (1992) Effects of acidic water on freshwater snails: Results from a study of 1000 lakes throughout Norway. Environmental Pollution, 78, 127-130.
PMID |
[52] |
Perner J, Wytrykush C, Kahmen A, Buchmann N, Egerer I, Creutzburg S, Odat N, Audorff V, Weisser WW (2005) Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands. Ecography, 28, 429-442.
DOI URL |
[53] |
Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751.
DOI URL |
[54] |
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353.
DOI URL |
[55] |
Pöyry J, Luoto M, Paukkunen J, Pykälä J, Raatikainen K, Kuussaari M (2006) Different responses of plants and herbivore insects to a gradient of vegetation height: An indicator of the vertebrate grazing intensity and successional age. Oikos, 115, 401-412.
DOI URL |
[56] | Prather RM, Welti EAR, Kaspari M (2021) Trophic differences regulate grassland food webs: Herbivores track food quality and predators select for habitat volume. Ecology, 102, e03453. |
[57] |
Prestidge RA (1982) The influence of nitrogenous fertilizer on the grassland Auchenorrhyncha (Homoptera). Journal of Applied Ecology, 19, 735-749.
DOI URL |
[58] |
Raubenheimer D, Simpson SJ (1993) The geometry of compensatory feeding in the locust. Animal Behaviour, 45, 953-964.
DOI URL |
[59] |
Raubenheimer D, Simpson SJ (2004) Organismal stoichiometry: Quantifying non-independence among food components. Ecology, 85, 1203-1216.
DOI URL |
[60] |
Richardson SJ, Press MC, Parsons AN, Hartley SE (2002) How do nutrients and warming impact on plant communities and their insect herbivores? A 9-year study from a sub-Arctic heath. Journal of Ecology, 90, 544-556.
DOI URL |
[61] |
Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biological Conservation, 92, 151-161.
DOI URL |
[62] |
Roth T, Kohli L, Rihm B, Meier R, Amrhein V (2021) Negative effects of nitrogen deposition on Swiss butterflies. Conservation Biology, 35, 1766-1776.
DOI PMID |
[63] | Russell EP (1989) Enemies hypothesis: A review of the effect of vegetational diversity on predatory insects and parasitoids. Environmental Entomology, 18, 590-599. |
[64] |
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27.
DOI URL |
[65] |
Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Bessler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
DOI |
[66] | Schmitz OJ (2010) Resolving Ecosystem Complexity. Princeton University Press, Princeton. |
[67] | Shi LQ, Vasseur L, Huang HS, Zeng ZH, Hu GP, Liu X, You MS (2017) Adult tea green leafhoppers, Empoasca onukii (Matsuda), change behaviors under varying light conditions. PLoS ONE, 12, e0168439. |
[68] |
Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM (2006) The Park Grass Experiment 1856-2006: Its contribution to ecology. Journal of Ecology, 94, 801-814.
DOI URL |
[69] | Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J, Brooks ML, Cade BS, Collins SL, Geiser LH, Gilliam FS, Jovan SE, Pardo LH, Schulz BK, Stevens CJ, Suding KN, Throop HL, Waller DM (2016) Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences, USA, 113, 4086-4091. |
[70] |
Srivastava DS, Lawton JH (1998) Why more productive sites have more species: An experimental test of theory using tree-hole communities. The American Naturalist, 152, 510-529.
DOI URL |
[71] | Sterner RW, Elser JJ (2003) Ecological Stoichiometry:Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[72] |
Stevens CJ, David TI, Storkey J (2018) Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology, 32, 1757-1769.
DOI URL |
[73] |
Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.
PMID |
[74] |
Streitberger M, Rose S, Hermann G, Fartmann T (2014) The role of a mound-building ecosystem engineer for a grassland butterfly. Journal of Insect Conservation, 18, 745-751.
DOI URL |
[75] | Sun YC, Guo HJ, Ge F (2017) Progress in research on the responses of insects to global climate change. Chinese Journal of Applied Entomology, 54, 539-552. (in Chinese with English abstract) |
[孙玉诚, 郭慧娟, 戈峰 (2017) 昆虫对全球气候变化的响应与适应性. 应用昆虫学报, 54, 539-552.] | |
[76] | Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303, 1879-1881. |
[77] | Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7, 109-133. |
[78] |
Tian QY, Yang LY, Ma PF, Zhou HR, Liu NN, Bai WM, Wang H, Ren LF, Lu P, Hanl WW, Schultz PA, Bever JD, Zhang FS, Lambers H, Zhang WH (2020) Below- ground-mediated and phase-dependent processes drive nitrogen-evoked community changes in grasslands. Journal of Ecology, 108, 1874-1887.
DOI URL |
[79] |
Treweek JR, Watt TA, Hambler C (1997) Integration of sheep production and nature conservation: Experimental management. Journal of Environmental Management, 50, 193-210.
DOI URL |
[80] |
van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science, 368, 417-420.
DOI PMID |
[81] |
van Klink R, van der Plas F, WallisDeVries MF, Olff H (2015) Effects of large herbivores on grassland arthropod diversity. Biological Reviews, 90, 347-366.
DOI URL |
[82] |
Boer P, Mabelis AA, Verberk WCEP, Siepel H (2012) Life-history strategies as a tool to identify conservation constraints: A case-study on ants in chalk grasslands. Ecological Indicators, 13, 303-313.
DOI URL |
[83] |
Wagner DL (2020) Insect declines in the Anthropocene. Annual Review of Entomology, 65, 457-480.
DOI PMID |
[84] | Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences, USA, 118, e2023989118. |
[85] |
WallisDeVries MF, Van Swaay CAM (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Global Change Biology, 12, 1620-1626.
DOI URL |
[86] |
WallisDeVries MF, Van Swaay CAM, Plate CL (2012) Changes in nectar supply: A possible cause of widespread butterfly decline. Current Zoology, 58, 384-391.
DOI URL |
[87] |
Wan NF, Fu LW, Dainese M, Hu YQ, Kiaer LP, Isbell F, Scherber C (2022) Plant genetic diversity affects multiple trophic levels and trophic interactions. Nature Communications, 13, 7312.
DOI |
[88] | Wang DL (2004) Progress in the coadaptation and coevolution between plants and herbivores. Acta Ecologica Sinica, 24, 2641-2648. (in Chinese with English abstract) |
[王德利 (2004) 植物与草食动物之间的协同适应及进化. 生态学报, 24, 2641-2648.] | |
[89] |
Westoby M (1978) What are the biological bases of varied diets? The American Naturalist, 112, 627-631.
DOI URL |
[90] |
Whittaker MS, Kirk WDJ (2004) The effect of photoperiod on walking, feeding, and oviposition in the western flower thrips. Entomologia Experimentalis et Applicata, 111, 209-214.
DOI URL |
[91] |
Williams MA, Cronin JT (2004) Response of a gall-forming guild (Hymenoptera: Cynipidae) to stressed and vigorous prairie roses. Environmental Entomology, 33, 1052-1061.
DOI URL |
[92] | Yang YHS, Xi XQ, Zhong XT, Eisenhauer N, Sun SC (2017) N addition suppresses the performance of grassland caterpillars (Gynaephora alpherakjj) by decreasing ground temperature. Ecosphere, 8, e01755. |
[93] | Zhang SH, Zhang Y, Ma XY, Wang C, Ma Q, Yang XC, Xu T, Ma Y, Zheng Z (2022) Mechanisms underlying loss of plant biodiversity by atmospheric nitrogen deposition in grasslands. Acta Ecologica Sinica, 42, 1252-1261. (in Chinese with English abstract) |
[张世虎, 张悦, 马晓玉, 王聪, 马群, 杨雪纯, 徐婷, 马越, 郑智 (2022) 大气氮沉降影响草地植物物种多样性机制研究综述. 生态学报, 42, 1252-1261.] | |
[94] |
Zhu H, Wang DL, Wang L, Bai YG, Fang J, Liu J (2012) The effects of large herbivore grazing on meadow steppe plant and insect diversity. Journal of Applied Ecology, 49, 1075-1083.
DOI URL |
[95] |
Zhu Y, Ma QH, Zhong ZW, Jiang M, Bakker ES, Harvey JA, Veen GF, Chen C, Wang DL (2023a) Contrasting effects of nitrogen fertiliser application on the performance of closely related grasshoppers through changes in plant nutrient concentrations. Ecological Entomology, 48, 347-357.
DOI URL |
[96] |
Zhu Y, Veen GF, Heinen R, Wang DL, Jiang M, Jin H, Bakker ES (2023b) Large mammalian herbivores affect arthropod food webs via changes in vegetation characteristics and microclimate. Journal of Ecology, 111, 2077-2089.
DOI URL |
[97] | Zhu Y, Wang DL, Zhong ZW (2017) Characteristics, causes, and consequences of trait-mediated indirect interactions in ecosystems. Acta Ecologica Sinica, 37, 7781-7790. (in Chinese with English abstract) |
[朱玉, 王德利, 钟志伟 (2017) 生态系统基于性状调节的物种间接作用: 特征、成因及后果. 生态学报, 37, 7781-7790.] | |
[98] |
Zhu Y, Zhong ZW, Pagès JF, Finke D, Wang DL, Ma QH, Hassan N, Zhu H, Wang L (2019) Negative effects of vertebrate on invertebrate herbivores mediated by enhanced plant nitrogen content. Journal of Ecology, 107, 901-912.
DOI |
[1] | 程建伟, 徐满厚, 窦永静, 王亚东, 王桠楠, 刘新民, 李永宏. 内蒙古典型草原马粪分解过程中节肢动物群落的季节动态变化[J]. 生物多样性, 2024, 32(6): 24018-. |
[2] | 董云伟, 鲍梦幻, 程娇, 陈义永, 杜建国, 高养春, 胡利莎, 李心诚, 刘春龙, 秦耿, 孙进, 王信, 杨光, 张崇良, 张雄, 张宇洋, 张志新, 战爱斌, 贺强, 孙军, 陈彬, 沙忠利, 林强. 中国海洋生物地理学研究进展和热点: 物种分布模型及其应用[J]. 生物多样性, 2024, 32(5): 23453-. |
[3] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[4] | 宋亮, 吴毅, 胡海霞, 刘文耀, 中村彰宏, 陈亚军, 马克平. 基于塔吊的林冠科学研究进展及展望[J]. 生物多样性, 2023, 31(12): 23363-. |
[5] | 程文达, 邢爽, 刘阳. 华莱士在动物体色演化研究中的贡献和当代启示[J]. 生物多样性, 2023, 31(12): 23434-. |
[6] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[7] | 彭莳嘉, 罗源, 蔡宏宇, 张晓玲, 王志恒. 全球变化情景下的中国木本植物受威胁物种名录[J]. 生物多样性, 2022, 30(5): 21459-. |
[8] | 胡惠玲, 姚致远, 高世斌, 朱波. 紫色土线虫对长期不同施肥措施的响应[J]. 生物多样性, 2022, 30(12): 22189-. |
[9] | 姚保民, 曾青, 张丽梅. 土壤原生生物多样性及其生态功能研究进展[J]. 生物多样性, 2022, 30(12): 22353-. |
[10] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[11] | 刘艳杰, 黄伟, 杨强, 郑玉龙, 黎绍鹏, 吴昊, 鞠瑞亭, 孙燕, 丁建清. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438-. |
[12] | 傅声雷, 刘满强, 张卫信, 邵元虎. 土壤动物多样性的地理分布及其生态功能研究进展[J]. 生物多样性, 2022, 30(10): 22435-. |
[13] | 黄方倩, 王超, 刘明庆, 陈秋会, 韩笑, 王磊, 席运官, 张纪兵. 有机种植对农田节肢动物多样性影响的整合分析[J]. 生物多样性, 2022, 30(1): 21243-. |
[14] | 武鹏峰, 崔淑艳, Abid Ali, 郑国. 蜘蛛飞航研究进展[J]. 生物多样性, 2021, 29(4): 517-530. |
[15] | 段美春, 覃如霞, 张宏斌, 陈宝雄, 金彬, 张松泊, 任少鹏, 金树权, 朱升海, 华家宁, 刘云慧, 宇振荣. 农田节肢动物不同取样方法的综合比较[J]. 生物多样性, 2021, 29(4): 477-487. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn