生物多样性 ›› 2022, Vol. 30 ›› Issue (2): 21282. DOI: 10.17520/biods.2021282
黄正良1,2, 刘翰伦1,2, 储诚进1,3, 李远智1,3,*()
收稿日期:
2021-07-14
接受日期:
2021-09-15
出版日期:
2022-02-20
发布日期:
2022-02-28
通讯作者:
李远智
作者简介:
*E-mail: liyuanzhi@mail.sysu.edu.cn基金资助:
Zhengliang Huang1,2, Hanlun Liu1,2, Chengjin Chu1,3, Yuanzhi Li1,3,*()
Received:
2021-07-14
Accepted:
2021-09-15
Online:
2022-02-20
Published:
2022-02-28
Contact:
Yuanzhi Li
摘要:
生物间的竞争关系是决定群落中物种共存和生物多样性的关键因素。传统研究主要关注物种两两之间的竞争作用, 而对多物种相互竞争形成的网络研究相对较少。近年来, 类似于“石头-剪刀-布”游戏的非传递性竞争被认为是一种重要的物种共存和生物多样性的维持机制, 越来越受到生态学家们的关注。本文首先回顾了非传递性竞争定义的发展过程, 并介绍了非传递环的不同结构。其次介绍了基于竞争结局矩阵以及入侵增长率的非传递性竞争度量指标, 并对比不同指标的特点与适用情形。随后通过多个研究实例介绍了非传递性竞争在自然群落中的普遍性, 并指明物种之间的权衡是非传递性竞争产生的生物学机制。最后介绍了非传递性竞争对生物多样性与生态系统功能的影响。非传递性竞争本质上是物种两两之间相互作用的组合, 是只包含单一作用类型的特殊网络结构。因此, 非传递性竞争如何影响生物多样性-生态系统功能关系和群落稳定性, 如何受到环境与高阶相互作用的影响, 以及如何将竞争网络拓展到包含不同相互作用类型的生态网络, 将是未来非传递性竞争研究的重要方向。对非传递性竞争的研究有助于整合生物间的各种相互作用, 构建更加现实合理的生态网络, 并加深对物种共存和生物多样性维持机制的认识, 进而有助于指导生物多样性的保护和恢复工作。
黄正良, 刘翰伦, 储诚进, 李远智 (2022) 生物间非传递性竞争研究进展. 生物多样性, 30, 21282. DOI: 10.17520/biods.2021282.
Zhengliang Huang, Hanlun Liu, Chengjin Chu, Yuanzhi Li (2022) Advances in intransitive competition between organisms. Biodiversity Science, 30, 21282. DOI: 10.17520/biods.2021282.
图1 传递与非传递性竞争网络的各种结构。不同字母代表不同物种, 同一字母不同数字代表不同基因型或表型。单向箭头指向胜利者, 其中虚线代表竞争关系的改变; 双向箭头表示竞争结局不确定, 竞争双方胜率相等。a: 三物种传递性竞争; b: 三物种非传递性竞争; c: 同一物种三种基因型或表型之间的非传递性竞争; d: 两物种非传递性竞争; e: 三物种弱非传递性竞争; f: 非传递性竞争奇数环; g: 非传递性竞争偶数环; h: 三物种非传递性竞争嵌套在六物种非传递性竞争中; i: 四物种非传递性竞争嵌套在六物种非传递性竞争中。
Fig. 1 Forms of transitive and intransitive competitive networks between species (different letters) or genotypes/phenotypes (same letter with different numbers). One-way arrow points to the winner, with dash line indicating competitive reversal. Two-way arrow indicates uncertain competitive outcomes. a, Transitive competition between three species; b, Intransitive competition between three species; c, Intransitive competition between three genotypes/phenotypes of the same species; d, Intransitive competition between two species; e, Weak intransitive competition between three species; f, Intransitive odd loop; g, Intransitive even loop; h, An intransitive triplet nested in a six-species intransitive loop; i, A four-species intransitive loop nested in a six-species intransitive loop.
非传递性指标 Metrics of intransitivity | | | |
---|---|---|---|
d (非传递性三元环的数量 The number of intransitive triplets) | 0 | 1 | 5 |
I (转换为等级性竞争所需最少竞争关系转换数 The minimum number of competitive reversals to convert a network to a hierarchy) | 0 | 1 | 3 |
δ' (参与非传递环的竞争关系数量 The number of interactions embed in intransitive triplets) | 0 | 3 | 10 |
v (竞争能力的差异性 The difference of competitive strength) | 0 | 1 | 3 |
u (是否存在绝对优势种 The presence of unbeatable species) | 1 | 1 | 0 |
a (是否存在绝对劣势种 The presence of always-beatable species) | 1 | 1 | 0 |
表1 使用不同指标度量竞争网络非传递性的示例
Table 1 Examples of calculating intransitivity of different competitive networks in different metrics
非传递性指标 Metrics of intransitivity | | | |
---|---|---|---|
d (非传递性三元环的数量 The number of intransitive triplets) | 0 | 1 | 5 |
I (转换为等级性竞争所需最少竞争关系转换数 The minimum number of competitive reversals to convert a network to a hierarchy) | 0 | 1 | 3 |
δ' (参与非传递环的竞争关系数量 The number of interactions embed in intransitive triplets) | 0 | 3 | 10 |
v (竞争能力的差异性 The difference of competitive strength) | 0 | 1 | 3 |
u (是否存在绝对优势种 The presence of unbeatable species) | 1 | 1 | 0 |
a (是否存在绝对劣势种 The presence of always-beatable species) | 1 | 1 | 0 |
[1] | Allesina S, Levine JM (2011) A competitive network theory of species diversity. Proceedings of the National Academy of Sciences, USA, 108, 5638-5642. |
[2] |
Bairey E, Kelsic ED, Kishony R (2016) High-order species interactions shape ecosystem diversity. Nature Communications, 7, 12285.
DOI PMID |
[3] |
Bezembinder TGG (1981) Circularity and consistency in paired comparisons. British Journal of Mathematical and Statistical Psychology, 34, 16-37.
DOI URL |
[4] |
Bimler MD, Stouffer DB, Lai HR, Mayfield MM (2018) Accurate predictions of coexistence in natural systems require the inclusion of facilitative interactions and environmental dependency. Journal of Ecology, 106, 1839-1852.
DOI URL |
[5] |
Buss LW, Jackson JBC (1979) Competitive networks: Nontransitive competitive relationships in cryptic coral reef environments. The American Naturalist, 113, 223-234.
DOI URL |
[6] |
Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature, 417, 844-848.
DOI URL |
[7] |
Cheng HY, Yao N, Huang ZG, Park J, Do Y, Lai YC (2014) Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions. Scientific Reports, 4, 7486.
DOI URL |
[8] |
Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
DOI URL |
[9] |
Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008) Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
DOI URL |
[10] |
Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract)
DOI URL |
[ 储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.]
DOI |
|
[11] |
Connell JH (1961) Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs, 31, 61-104.
DOI URL |
[12] | Connell JH (1976) Competitive interactions and the species diversity of corals. In: Coelenterate Ecology and Behavior (ed.ed. Mackie GO), pp. 51-58. Springer, Boston. |
[13] |
Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
PMID |
[14] | Darwin CR (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London. |
[15] |
Durrett R, Levin S (1997) Allelopathy in spatially distributed populations. Journal of Theoretical Biology, 185, 165-171.
PMID |
[16] |
Feng YH, Soliveres S, Allan E, Rosenbaum B, Wagg C, Tabi A, De Luca E, Eisenhauer N, Schmid B, Weigelt A, Weisser WW, Roscher C, Fischer M (2020) Inferring competitive outcomes, ranks and intransitivity from empirical data: A comparison of different methods. Methods in Ecology and Evolution, 11, 117-128.
DOI URL |
[17] |
Gallien L (2017) Intransitive competition and its effects on community functional diversity. Oikos, 126, 615-623.
DOI URL |
[18] |
Gallien L, Landi P, Hui C, Richardson DM (2018) Emergence of weak-intransitive competition through adaptive diversification and eco-evolutionary feedbacks. Journal of Ecology, 106, 877-889.
DOI URL |
[19] |
Gallien L, Zimmermann NE, Levine JM, Adler PB (2017) The effects of intransitive competition on coexistence. Ecology Letters, 20, 791-800.
DOI PMID |
[20] | Gause GF (1934) The Struggle for Existence. Williams & Wilkins, Baltimore. |
[21] |
Gilpin ME (1975) Limit cycles in competition communities. The American Naturalist, 109, 51-60.
DOI URL |
[22] | Godoy O, Stouffer DB, Kraft NJB, Levine JM (2017) Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology, 98, 1193-1200. |
[23] |
Grilli J, Barabás G, Michalska-Smith MJ, Allesina S (2017) Higher-order interactions stabilize dynamics in competitive network models. Nature, 548, 210-213.
DOI URL |
[24] |
Hardin G (1960) The competitive exclusion principle. Science, 131, 1292-1297.
DOI URL |
[25] |
Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[26] |
Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature, 402, 407-410.
DOI URL |
[27] | Jackson JB, Buss L (1975) Alleopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Sciences, USA, 72, 5160-5163. |
[28] |
Keddy PA, Shipley B (1989) Competitive hierarchies in herbaceous plant communities. Oikos, 54, 234-241.
DOI URL |
[29] |
Kendall MG, Smith BB (1940) On the method of paired comparisons. Biometrika, 31, 324-345.
DOI URL |
[30] |
Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock- paper-scissors. Nature, 418, 171-174.
DOI URL |
[31] |
Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature, 428, 412-414.
DOI URL |
[32] |
Kleinhesselink AR, Kraft NJB, Levine JM (2019) Mechanisms underlying higher order interactions: From quantitative definitions to ecological processes. bioRxiv, doi: 10.1101/857920.
DOI |
[33] |
Laird RA, Schamp BS (2006) Competitive intransitivity promotes species coexistence. The American Naturalist, 168, 182-193.
DOI URL |
[34] |
Laird RA, Schamp BS (2008) Does local competition increase the coexistence of species in intransitive networks? Ecology, 89, 237-247.
DOI URL |
[35] |
Laird RA, Schamp BS (2018a) Calculating competitive intransitivity: Computational challenges. The American Naturalist, 191, 547-552.
DOI URL |
[36] |
Laird RA, Schamp BS (2018b) Exploring the performance of intransitivity indices in predicting coexistence in multispecies systems. Journal of Ecology, 106, 815-825.
DOI URL |
[37] | Lang J (1973) Interspecific aggression by scleractinian corals. II. Why the race is not only to the swift. Bulletin of Marine Science, 23, 260-279. |
[38] | Letten AD, Stouffer DB (2019) The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecology Letters, 22, 423-436. |
[39] |
Levine JM, Bascompte J, Adler PB, Allesina S (2017) Beyond pairwise mechanisms of species coexistence in complex communities. Nature, 546, 56-64.
DOI URL |
[40] | Lewontin RC (1968) Evolution of complex genetic systems. In: Some Mathematical Questions in Biology (ed.ed. Gerstenhaber M),pp. 62-87. American Mathematical Society, Providence. |
[41] | Li YL, Bearup D, Liao JB (2020) Habitat loss alters effects of intransitive higher-order competition on biodiversity:A new metapopulation framework. Proceedings of the Royal Society B: Biological Sciences, 287, 20201571. |
[42] | Li YZ, Mayfield MM, Wang B, Xiao JL, Kral K, Janik D, Holik J, Chu CJ (2021) Beyond direct neighbourhood effects: Higher-order interactions improve modelling and predicting tree survival and growth. National Science Review, 8, nwaa244. |
[43] |
Li YZ, Xiao JL, Liu HL, Wang YS, Chu CJ (2020) Advances in higher-order interactions between organisms. Biodiversity Science, 28, 1333-1344. (in Chinese with English abstract)
DOI URL |
[ 李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进 (2020) 生物间高阶相互作用研究进展. 生物多样性, 28, 1333-1344.] | |
[44] |
Liu L, Cheng JH, Li YW, Lan ZC, Bai YF (2021) N-enrichment induced biodiversity loss can be explained by reductions in competitive intransitivity: Evidence from a decade-long grassland experiment. Environmental and Experimental Botany, 184, 104372.
DOI URL |
[45] |
Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
DOI URL |
[46] | Losapio G, Montesinos-Navarro A, Saiz H (2019) Perspectives for ecological networks in plant ecology. Plant Ecology & Diversity, 12, 87-102. |
[47] | Losapio G, Schöb C, Staniczenko PPA, Carrara F, Palamara GM, De Moraes CM, Mescher MC, Brooker RW, Butterfield BJ, Callaway RM, Cavieres LA, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Bascompte J (2021) Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities. Proceedings of the National Academy of Sciences, USA, 118, e2005759118. |
[48] | Lotka AJ (1925) Elements of Physical Biology. Williams and Wilkins Company, Detroit. |
[49] |
Matías L, Godoy O, Gómez-Aparicio L, Pérez-Ramos IM (2018) An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. Journal of Ecology, 106, 826-837.
DOI URL |
[50] |
May RM, Leonard WJ (1975) Nonlinear aspects of competition between three species. SIAM Journal on Applied Mathematics, 29, 243-253.
DOI URL |
[51] | Mayfield MM, Stouffer DB (2017) Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecology & Evolution, 1, 62. |
[52] | Maynard DS, Bradford MA, Lindner DL, Frey SD, Glaeser JA, Crowther TW (2017a) Diversity begets diversity in competition for space. Nature Ecology & Evolution, 1, 156. |
[53] | Maynard DS, Crowther TW, Bradford MA (2017b) Competitive network determines the direction of the diversity-function relationship. Proceedings of the National Academy of Sciences, USA, 114, 11464-11469. |
[54] |
Monsuur H, Storcken T (1997) Measuring intransitivity. Mathematical Social Sciences, 34, 125-152.
DOI URL |
[55] |
Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science, 337, 349-351.
DOI PMID |
[56] |
Palmer TM, Stanton ML, Young TP, Lemboi JS, Goheen JR, Pringle RM (2013) A role for indirect facilitation in maintaining diversity in a guild of African Acacia ants. Ecology, 94, 1531-1539.
PMID |
[57] |
Petraitis PS (1979) Competitive networks and measures of intransitivity. The American Naturalist, 114, 921-925.
DOI URL |
[58] |
Reichenbach T, Mobilia M, Frey E (2007) Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature, 448, 1046-1049.
DOI URL |
[59] |
Saiz H, Le Bagousse-Pinguet Y, Gross N, Maestre FT (2019) Intransitivity increases plant functional diversity by limiting dominance in drylands worldwide. Journal of Ecology, 107, 240-252.
DOI URL |
[60] |
Shipley B (1993) A null model for competitive hierarchies in competition matrices. Ecology, 74, 1693-1699.
DOI URL |
[61] |
Shipley B, Keddy PA (1994) Evaluating the evidence for competitive hierarchies in plant communities. Oikos, 69, 340-345.
DOI URL |
[62] |
Silvertown J, Law R (1987) Do plants need niches? Some recent developments in plant community ecology. Trends in Ecology & Evolution, 2, 24-26.
DOI URL |
[63] |
Sinervo B, Lively CM (1996) The rock-paper-scissors game and the evolution of alternative male strategies. Nature, 380, 240-243.
DOI URL |
[64] |
Singh P, Baruah G (2021) Higher order interactions and species coexistence. Theoretical Ecology, 14, 71-83.
DOI URL |
[65] |
Slater P (1961) Inconsistencies in a schedule of paired comparisons. Biometrika, 48, 303-312.
DOI URL |
[66] |
Soliveres S, Allan E (2018) Everything you always wanted to know about intransitive competition but were afraid to ask. Journal of Ecology, 106, 807-814.
DOI URL |
[67] |
Soliveres S, Lehmann A, Boch S, Altermatt F, Carrara F, Crowther TW, Delgado-Baquerizo M, Kempel A, Maynard DS, Rillig MC, Singh BK, Trivedi P, Allan E (2018) Intransitive competition is common across five major taxonomic groups and is driven by productivity, competitive rank and functional traits. Journal of Ecology, 106, 852-864.
DOI URL |
[68] |
Soliveres S, Maestre FT, Ulrich W, Manning P, Boch S, Bowker MA, Prati D, Delgado-Baquerizo M, Quero JL, Schöning I, Gallardo A, Weisser W, Müller J, Socher SA, García-Gómez M, Ochoa V, Schulze ED, Fischer M, Allan E (2015) Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters, 18, 790-798.
DOI PMID |
[69] |
Stebbing ARD (1973) Competition for space between the epiphytes of Fucus serratus L. Journal of the Marine Biological Association of the United Kingdom, 53, 247-261.
DOI URL |
[70] | Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. |
[71] |
Ulrich W, Kubota Y, Piernik A, Gotelli NJ (2018) Functional traits and environmental characteristics drive the degree of competitive intransitivity in European saltmarsh plant communities. Journal of Ecology, 106, 865-876.
DOI URL |
[72] |
Ulrich W, Soliveres S, Kryszewski W, Maestre FT, Gotelli NJ (2014) Matrix models for quantifying competitive intransitivity. Oikos, 123, 1057-1070.
DOI URL |
[73] | Volterra V (1926) Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Memoria Della Regia Accademia Nazionale Del Lincei, 2, 31-113. (in Italian) |
[74] | Wilson JB (1990) Mechanisms of species coexistence: Twelve explanations for Huchinson’s ‘paradox of the plankton’: Evidence from New Zealand plant communities. New Zealand Journal of Ecology, 13, 17-42. |
[75] | Xiao JL, Li YZ, Chu CJ, Wang YS, Meiners SJ, Stouffer DB (2020) Higher-order interactions mitigate direct negative effects on population dynamics of herbaceous plants during succession. Environmental Research Letters, 15, 074023. |
[76] |
Yang YH, Hui C (2021) How competitive intransitivity and niche overlap affect spatial coexistence. Oikos, 130, 260-273.
DOI URL |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[15] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn