生物多样性 ›› 2022, Vol. 30 ›› Issue (11): 22069. DOI: 10.17520/biods.2022069
所属专题: 青藏高原生物多样性与生态安全
收稿日期:
2022-02-09
接受日期:
2022-04-24
出版日期:
2022-11-20
发布日期:
2022-06-23
通讯作者:
牛克昌
作者简介:
E-mail: kechangniu@nju.edu.cn基金资助:
Yongqingcuomu , Xinqiang Xi, Kechang Niu()
Received:
2022-02-09
Accepted:
2022-04-24
Online:
2022-11-20
Published:
2022-06-23
Contact:
Kechang Niu
摘要:
植物多样性是调控食物网结构和生态系统功能最重要的生物因素, 植物多样性丧失深刻影响食草动物, 但由于小型食草动物种群数量波动明显、统计随机性较大等困难, 我们对植物多样性丧失如何影响小型食草动物依然知之甚少。基于在青藏高原高寒草甸设置的长期植物物种剔除试验, 本研究于2016-2020年7-8月连续调查了植物物种剔除各处理中草原毛虫(Gynaephora alpherakiif)的数量, 分析了植物物种及功能群丧失对草原毛虫的影响。结果表明, 虽然时空差异及统计随机性是影响草原毛虫数量变化的主要因素, 但植物物种剔除介导的群落差异对草原毛虫数量的影响依然显著: (1)在各观测时段, 优势种线叶嵩草(Kobresia capillifolia)的丧失导致群落中草原毛虫数量显著减少; 禾草类物种丧失也会减少草原毛虫数量, 但其影响仅在8月显著; (2)杂类草物种丧失通过增加群落中禾草物种多度, 可增加草原毛虫数量; 豆科物种丧失使莎草增多, 也会增加草原毛虫数量; (3)各植物功能群部分物种剔除并未显著影响草原毛虫数量。本研究证实了高寒草甸中草原毛虫数量会因优势植物嵩草和禾草的多度减少或禾草物种丧失而显著减少, 但群落总生物量、个体数和物种丰富度、豆科多度以及各功能群植物同比减少, 都对草原毛虫数量没有明显影响。这些结果说明在随机作用主导下, 植物群落中的特定功能群相对多度(而非物种多样性)变化深刻影响草原毛虫适合度, 进而影响生态系功能及服务; 未来生物多样性研究及草地虫害生物防控中应更多考虑统计随机性及植物功能多样性对小型食草动物的影响。
雍青措姆, 习新强, 牛克昌 (2022) 高寒草甸植物物种丧失对草原毛虫的影响. 生物多样性, 30, 22069. DOI: 10.17520/biods.2022069.
Yongqingcuomu , Xinqiang Xi, Kechang Niu (2022) Effect of plant species loss on grassland caterpillar in alpine meadows. Biodiversity Science, 30, 22069. DOI: 10.17520/biods.2022069.
影响效应 Effect size | |
---|---|
年际影响 Effect of years (变异解释 Variability = 10.7%, F = 114.6**, df = 4) | |
2017 vs. 2016 | 0.28 ± 0.03** |
2018 vs. 2016 | 0.12 ± 0.03** |
2019 vs. 2016 | -0.54 ± 0.04** |
2020 vs. 2016 | -0.44 ± 0.04** |
月份影响 Effect of months (变异解释 Variability = 1.9%, F = 16.3**, df = 5) | |
8月vs. 7月August vs. July | -0.04 ± 0.02 |
重复测量影响 Effect of repeated measurement (变异解释 Variability = 40.8%, F = 48.8**, df = 36) | |
第一次 1st vs. 0th observation | -0.36 ± 0.03** |
第二次 2nd vs. 0th observation | -0.70 ± 0.03** |
第三次 3rd vs. 0th observation | -0.84 ± 0.03** |
第四次 4th vs. 0th observation | -1.2 ± 0.04** |
植物剔除处理影响 Effect of plant removal (变异解释 Variability = 8.3%, F =1.5**, df = 230) | |
剔除优势嵩草vs.对照 Ksp vs. CK | -0.29 ± 0.04** |
剔除禾草物种vs.对照 Gsp vs. CK | -0.19 ± 0.04** |
剔除杂类草物种vs.对照 Fsp vs. CK | 0.12 ± 0.03** |
剔除豆科物种vs.对照 Lsp vs. CK | 0.06 ± 0.03 |
各功能群部分物种剔除vs.对照 Psp vs. CK | -0.02 ± 0.03 |
残差 Residuals (变异解释 Variability = 38.4%, df = 1,653) |
表1 利用广义线性模型评估年、月、重复测量和植物物种剔除处理对草原毛虫数量的影响效应。模型估计的斜率(均值 ± 标准差)表示影响的方向(正数为增加、负数为减小)、程度(斜率数值大小)及其显著性(* P < 0.05, ** P < 0.001)。
Table 1 Effect of year, month, repeated measurement and plant species removal on counts of grassland caterpillar assessed by generalized linear mixed models (GLMM). The tabular (estimated) slopes (mean ± SD) from GLMM measured the effect of fixed factors on caterpillar counts, with direction, strength and significance of the effects indicated by + (increased) or - (decreased), absolute size of value and * (* P < 0.05, ** P < 0.01), respectively. Ksp: Removal of Kobresia capillifoli; Gsp: Removal of grass species; Fsp: Removal of forb species; Lsp: Removal of legume species; Psp: Removal of partial species for each functional group.
影响效应 Effect size | |
---|---|
年际影响 Effect of years (变异解释 Variability = 10.7%, F = 114.6**, df = 4) | |
2017 vs. 2016 | 0.28 ± 0.03** |
2018 vs. 2016 | 0.12 ± 0.03** |
2019 vs. 2016 | -0.54 ± 0.04** |
2020 vs. 2016 | -0.44 ± 0.04** |
月份影响 Effect of months (变异解释 Variability = 1.9%, F = 16.3**, df = 5) | |
8月vs. 7月August vs. July | -0.04 ± 0.02 |
重复测量影响 Effect of repeated measurement (变异解释 Variability = 40.8%, F = 48.8**, df = 36) | |
第一次 1st vs. 0th observation | -0.36 ± 0.03** |
第二次 2nd vs. 0th observation | -0.70 ± 0.03** |
第三次 3rd vs. 0th observation | -0.84 ± 0.03** |
第四次 4th vs. 0th observation | -1.2 ± 0.04** |
植物剔除处理影响 Effect of plant removal (变异解释 Variability = 8.3%, F =1.5**, df = 230) | |
剔除优势嵩草vs.对照 Ksp vs. CK | -0.29 ± 0.04** |
剔除禾草物种vs.对照 Gsp vs. CK | -0.19 ± 0.04** |
剔除杂类草物种vs.对照 Fsp vs. CK | 0.12 ± 0.03** |
剔除豆科物种vs.对照 Lsp vs. CK | 0.06 ± 0.03 |
各功能群部分物种剔除vs.对照 Psp vs. CK | -0.02 ± 0.03 |
残差 Residuals (变异解释 Variability = 38.4%, df = 1,653) |
图1 利用广义线性混合模型评估各年份和月份高寒草甸植物物种剔除处理对草原毛虫数量的影响效应。与对照组群落中(CK)毛虫数量(a)相比, 植物物种剔除处理对群落中毛虫数量的影响方向及大小(b-f)以广义线性混合模型中固定因子的斜率(及95%置信区间)表示, 植物剔除处理显著(* P < 0.05, ** P < 0.001)增加(正值)或减小(负值)的影响以带*的蓝色正或红色负斜率值(置信区间与零不相交)表示, 无*的灰色斜率值(置信区间与零相交)为影响不显著。
Fig. 1 Effect of plant species removal on numbers of grassland caterpillar in each year and month in a Tibetan alpine meadow assessed by generalized linear mixed models (GLMM). Comparing to caterpillar counts in plots (CK) without removing plant species (a), the effect of plant species removal in each year and month on the caterpillar counts indicated by values and 95% confidence interval (CI) of estimated slopes from GLMM, with significant (95% CI not overlap with zero, * P < 0.05, ** P < 0.01) positive (blue) and negative (red) effect highlighted by colored values with * and CI of the estimated slopes, and values without * and CI (overlap with zero) indicated non-significant difference between CK and treatment of plant species removal. Ksp, Gsp, Fsp, Psp, CK and Lsp see Table 1.
物种丰富度 Species richness | 总个体数 Total individuals | 总生物量 Total biomass | 各功能群生物量 Biomass for each functional group | ||||
---|---|---|---|---|---|---|---|
莎草 Sedges | 禾草 Grasses | 杂类草 Forbs | 豆科 Legumes | ||||
年际影响 Effect of years | |||||||
变异解释 Variability (%) | 34.5% | 49.7% | 79.9% | 50.9% | 20.2% | 46.8% | 26.8% |
F | 139.8** | 127.7** | 455.6** | 193.1** | 75.7** | 226.9** | 57.9** |
自由度 df | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
影响效应 Effect size (与2016年比, 各年的影响以斜率均值 ± 标准差衡量 Effect size of year vs. 2016 was measured by mean ± SD of slopes) | |||||||
2017 | 0.06 ± 0.02 | 0.26 ± 0.01** | -81.5 ± 2.7** | -25.7 ± 1.5** | -2.9 ± 1.5 | -45.6 ± 2.5** | -7.1 ± 0.6** |
2019 | 0.29 ± 0.03** | 0.66 ± 0.01** | -51.5 ± 2.7** | -11.8 ± 1.4** | -1.7 ± 1.5 | -35.9 ± 2.5** | -4.6 ± 0.6** |
2020 | 0.30 ± 0.03** | 0.51 ± 0.01** | -89.8 ± 2.7** | -25.8 ± 1.4** | -17 ± 1.5** | -44.9 ± 2.5** | -4.4 ± 0.6** |
物种剔除影响 Effect of species removal | |||||||
变异解释 Variability (%) | 39.8% | 9.7% | 1.90% | 22.3% | 52.6% | 32.1% | 28.3% |
F | 24.1** | 3.7** | 1.62* | 12.7** | 29.6 | 23.4** | 9.2** |
自由度 df | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
影响效应 Effect size (与对照比, 各处理的影响以斜率均值 ± 标准差度量 Effect size of treatment vs. CK was measured by mean ± SD of slopes) | |||||||
剔除优势嵩草 Ksp | -0.05 ± 0.03 | -0.11 ± 0.01** | -5.4 ± 3.3 | -11.4 ± 1.8** | -1.7 ± 1.8 | -4.8 ± 3.1 | -0.5 ± 0.7 |
剔除禾草物种 Gsp | -0.20 ± 0.03** | -0.11 ± 0.01** | -7.70 ± 3.3* | -0.36 ± 1.8 | -14.4 ± 1.9** | 7.8 ± 3.1* | -0.5 ± 0.7 |
剔除杂类草物种 Fsp | -0.45 ± 0.04** | -0.30 ± 0.01** | -8.0 ± 3.3* | 6.0 ± 1.8** | 19.2 ± 1.9** | -31.1 ± 3.1** | 5.7 ± 0.7** |
剔除豆科物种 Lsp | -0.07 ± 0.03* | -0.09 ± 0.01** | -7.6 ± 3.3* | -0.42 ± 1.8 | -0.5 ± 1.8 | -4.7 ± 3.1 | -2.3 ± 0.8** |
各功能群部分物种剔除 Psp | -0.11 ± 0.03** | -0.19 ± 0.01** | -3.7 ± 3.3 | -3.8 ± 1.7* | -2.7 ± 1.8 | -1.7 ± 3.1 | 1.1 ± 0.7 |
残差 Residuals | |||||||
变异解释 Variability (%) | 25.7% | 40.5% | 18.2% | 26.9% | 27.2% | 21.2% | 45.0% |
自由度 df | 312 | 312 | 312 | 306 | 306 | 308 | 292 |
表2 利用广义线性模型评估多年植物物种剔除处理对植物群落属性的影响。表中数据为广义线性模型的固定因子(年际和植物种剔除处理)对因变量(植物基本属性)的变异解释(%)、差异显著性(F值)、斜率(均值 ± 标准差), 表示固定因子对因变量影响的方向(正数为增加、负数为减小)和程度(斜率数值大小)及其显著性(粗体为P < 0.1, * P < 0.05, ** P < 0.001)。
Table 2 Effect of year and plant species removal on plant community attributes assessed by linear mixed models (GLMM). The tabular values from GLMM measured the effect of fixed factors (year and treatment of plant species removal) on plant community attributes, including accounted variability (%), significance test of difference (F-value with P-value), and estimated slopes (mean ± SD) that indicate direction (+ increased, - decreased) and strength (absolute size of value) of effect of difference in year (each year vs. 2016) or in plant species removal (each treatment vs. CK plots without removing any species) on plant community attributes, with significance highlighted by bold (P < 0.1) and * (* P < 0.05, ** P < 0.01). Ksp, Gsp, Fsp, Psp, CK and Lsp see Table 1.
物种丰富度 Species richness | 总个体数 Total individuals | 总生物量 Total biomass | 各功能群生物量 Biomass for each functional group | ||||
---|---|---|---|---|---|---|---|
莎草 Sedges | 禾草 Grasses | 杂类草 Forbs | 豆科 Legumes | ||||
年际影响 Effect of years | |||||||
变异解释 Variability (%) | 34.5% | 49.7% | 79.9% | 50.9% | 20.2% | 46.8% | 26.8% |
F | 139.8** | 127.7** | 455.6** | 193.1** | 75.7** | 226.9** | 57.9** |
自由度 df | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
影响效应 Effect size (与2016年比, 各年的影响以斜率均值 ± 标准差衡量 Effect size of year vs. 2016 was measured by mean ± SD of slopes) | |||||||
2017 | 0.06 ± 0.02 | 0.26 ± 0.01** | -81.5 ± 2.7** | -25.7 ± 1.5** | -2.9 ± 1.5 | -45.6 ± 2.5** | -7.1 ± 0.6** |
2019 | 0.29 ± 0.03** | 0.66 ± 0.01** | -51.5 ± 2.7** | -11.8 ± 1.4** | -1.7 ± 1.5 | -35.9 ± 2.5** | -4.6 ± 0.6** |
2020 | 0.30 ± 0.03** | 0.51 ± 0.01** | -89.8 ± 2.7** | -25.8 ± 1.4** | -17 ± 1.5** | -44.9 ± 2.5** | -4.4 ± 0.6** |
物种剔除影响 Effect of species removal | |||||||
变异解释 Variability (%) | 39.8% | 9.7% | 1.90% | 22.3% | 52.6% | 32.1% | 28.3% |
F | 24.1** | 3.7** | 1.62* | 12.7** | 29.6 | 23.4** | 9.2** |
自由度 df | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
影响效应 Effect size (与对照比, 各处理的影响以斜率均值 ± 标准差度量 Effect size of treatment vs. CK was measured by mean ± SD of slopes) | |||||||
剔除优势嵩草 Ksp | -0.05 ± 0.03 | -0.11 ± 0.01** | -5.4 ± 3.3 | -11.4 ± 1.8** | -1.7 ± 1.8 | -4.8 ± 3.1 | -0.5 ± 0.7 |
剔除禾草物种 Gsp | -0.20 ± 0.03** | -0.11 ± 0.01** | -7.70 ± 3.3* | -0.36 ± 1.8 | -14.4 ± 1.9** | 7.8 ± 3.1* | -0.5 ± 0.7 |
剔除杂类草物种 Fsp | -0.45 ± 0.04** | -0.30 ± 0.01** | -8.0 ± 3.3* | 6.0 ± 1.8** | 19.2 ± 1.9** | -31.1 ± 3.1** | 5.7 ± 0.7** |
剔除豆科物种 Lsp | -0.07 ± 0.03* | -0.09 ± 0.01** | -7.6 ± 3.3* | -0.42 ± 1.8 | -0.5 ± 1.8 | -4.7 ± 3.1 | -2.3 ± 0.8** |
各功能群部分物种剔除 Psp | -0.11 ± 0.03** | -0.19 ± 0.01** | -3.7 ± 3.3 | -3.8 ± 1.7* | -2.7 ± 1.8 | -1.7 ± 3.1 | 1.1 ± 0.7 |
残差 Residuals | |||||||
变异解释 Variability (%) | 25.7% | 40.5% | 18.2% | 26.9% | 27.2% | 21.2% | 45.0% |
自由度 df | 312 | 312 | 312 | 306 | 306 | 308 | 292 |
图2 利用广义线性混合模型分析评估高寒草甸植物群落属性对草原毛虫数量的影响。将观测年月作为随机因子, 广义线性混合模型中植物群落属性(因变量)的斜率及置信区间表示了植物群落总的地上生物量、个体数及物种数对草原毛虫数量的影响效应(a-e), 以及各功能群的生物量(f-j)、个体数(k-o)和物种数量(p-t)对草原毛虫数量(每月第1-4次观测以及多次观测中位数)的影响, 其中带*的蓝或红色斜率值及置信区间(不与零相交)表示显著的(* P < 0.05, ** P < 0.001, 加粗为边缘显著0.05 < P < 0.1)正或负影响效应, 不带*的斜率值为不显著(置信区间与零相交)。
Fig. 2 Effect of plant community attributes on numbers of grassland caterpillar in a Tibetan alpine meadow assessed by generalized linear mixed models (GLMM). Using difference in years and month as random factors, the values and 95% confidence interval (CI) of estimated slopes from GLMM measured the effect of whole community attributes (aboveground biomass, individual numbers and species numbers) on caterpillar counts (a-e), aboveground biomass (f-j), individual numbers (k-o), and species numbers (p-t) of each functional groups on the caterpillar counts, with significant positive (blue) and negative (red) effect highlighted by values with * and CI (not overlap with zero) of the estimated slopes (* P < 0.05, ** P < 0.01, no * but bolded values indicates 0.05 < P < 0.1), and the values without * and CI (not overlap zero) indicated non-significant effect.
图3 结构方程模型揭示高寒植物物种剔除通过改变群落属性和结构影响草原毛虫数量。以年份和月份作为随机因子, 结构方程模型中各物种剔除处理对群落中各植物功能群多度以及后者对毛虫数量的显著正、负影响用带正、负数字的蓝色、红色单箭头线表示(粗细根据斜率数值表示影响大小); 不显著的影响途径未标明; 灰色的双箭头表示中间介导变量间有相关性。R2c表示整合随机影响的植物物种剔除处理对植物群落属性的解释量及植物群落属性对草原毛虫数量的解释量; 总体模型拟合参数为: Fisher’s C = 16.2, P = 0.09, df = 10。
Fig. 3 Structural equation model (SEM) revealed the effect of plant species removal in the alpine meadow on caterpillar counts mostly via change in attribute and structure of plant communities. Using difference in year and month as random factors, the estimated slopes in SEM measured effect of plant species removal on plant community as well as plant community on caterpillar counts, with blue and red single-arrowed lines accompanying values with * indicate significant (* P < 0.05, ** P < 0.01, no * 0.05 < P < 0.1) positive and negative effect (the width of lines corresponding to the values that indicate strength of the effect), respectively; gray double-arrowed lines for correlations between variables of plant community. R2c indicates explanation of plant removal treatment on variables of plant community and later to Caterpillar numbers. Global goodness-of-fit: Fisher’s C = 16.2, P = 0.09, df = 10.
[1] | Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. |
[2] | Cao H, Zhu WY, Zhao XQ (2016) Effects of warming and grazing on growth and development of the grassland caterpillar (Gynaephora menyuanensis). Acta Prataculturae Sinica, 25, 268-272. (in Chinese with English abstract) |
[曹慧, 朱文琰, 赵新全 (2016) 试验增温和放牧对门源草原毛虫生长发育的影响. 草业学报, 25, 268-272.] | |
[3] |
Cease AJ, Elser JJ, Ford CF, Hao SG, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 335, 467-469.
DOI PMID |
[4] | Chen KL, Yu XC, Yao BQ, Ma Z, Wang WY, Wang HC, Zhou HK, Zhao XQ (2016) Spatial distribution of Gynaephora menyuanensis under different grazing intensities in alpine meadow. Acta Agrestia Sinica, 24, 191-197. (in Chinese with English abstract) |
[陈珂璐, 余欣超, 姚步青, 马真, 王文颖, 王慧春, 周华坤, 赵新全 (2016) 不同放牧强度下门源草原毛虫在高寒草甸上的空间分布. 草地学报, 24, 191-197.]
DOI |
|
[5] |
Corlett RT (2016) Plant diversity in a changing world: Status, trends, and conservation needs. Plant Diversity, 38, 10-16.
DOI PMID |
[6] | Delignette-Muller ML, Dutang C (2015) fitdistrplus: An R package for fitting distributions. Journal of Statistical Software, 64(4), 1-34. |
[7] | Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu JG, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin YJ, Visseren-Hamakers I, Willis KJ, Zayas CN (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366, eaax3100. |
[8] | Díaz S, Symstad AJ, Chapin FS III, Wardle DA, Huenneke LF (2003) Functional diversity revealed by removal experiments. Trends in Ecology & Evolution, 18, 140-146. |
[9] | Dong SK, Shang ZH, Gao JX, Boone RB (2020) Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 287, 106684. |
[10] | Duffy JE, Godwin CM, Cardinale BJ (2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261-264. |
[11] | Gao Q, Yang ZL (2010) Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza, 20, 281-287. |
[12] | Gu HJ, Wang H, Shangguan ZJ, Shi HJ, Zhu JX, He JS (2022) Effects of nitrogen addition on the population density of Gynaephora menyuanensis in Tibetan alpine grassland. Acta Ecologica Sinica, 42, 1958-1967 (in Chinese with English abstract) |
[顾慧洁, 汪浩, 上官子健, 石慧瑾, 朱剑霄, 贺金生 (2022) 外源氮添加对高寒草地门源草原毛虫种群密度的影响. 生态学报, 42, 1958-1967.] | |
[13] | Hair JF, Black WC, Babin BJ, Anderson RE (2010) Multivariate Data Analysis, 7th edn. Prentice Hall, Englewood Cliffs, NJ. |
[14] | He XD, Wang WJ (2003) Preliminary study on distribution region and damage grades of grassland caterpillar in Qinghai. Pratacultural Science, 20(8), 45-48. (in Chinese) |
[何孝德, 王薇娟 (2003) 青海省草原毛虫分布区域及为害等级划分初探. 草业科学, 20(8), 45-48.] | |
[15] |
Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CP, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science, 286, 1123-1127.
DOI PMID |
[16] | Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-108. |
[17] | Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202. |
[18] | Jiang L, Hu J, Yang ZA, Zhan W, Zhao C, Zhu D, He YX, Chen H, Peng CH (2021) Effects of plant functional group removal on community structure, diversity and production in alpine meadow. Acta Ecologica Sinica, 41, 1402-1411. (in Chinese with English abstract) |
[姜林, 胡骥, 杨振安, 詹伟, 赵川, 朱单, 何奕忻, 陈槐, 彭长辉 (2021) 植物功能群去除对高寒草甸群落结构、多样性及生产力的影响. 生态学报, 41, 1402-1411.] | |
[19] | Kang L, Han XG, Zhang ZB, Sun OJ (2007) Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 997-1008. |
[20] |
Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia, 125, 271-282.
DOI PMID |
[21] | Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579. |
[22] |
Liu YZ, Reich PB, Li GY, Sun SC (2011) Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 92, 1201-1207.
PMID |
[23] | Lüdecke D, Schwemmer C (2017) sjPlot: Data Visualization for Statistics in Social Science. Version 2.4.0. https://CRAN. R-project.org/package=sjPlot. |
[24] | Ma PJ, Li YJ, Pan DF, Chen BJ, Li XC, Wang DL (2017) Effect of grassland caterpillar on the characteristics of the vegetation of Kobresia pygmaea alpine grassland under the interference of the yak grazing. Pratacultural Science, 34, 698-705. (in Chinese with English abstract) |
[马培杰, 李亚娇, 潘多锋, 陈本建, 李心诚, 王德利 (2017) 牦牛干扰下草原毛虫对小嵩草高寒草甸植物群落特征的影响. 草业科学, 34, 698-705.] | |
[25] | Mi XC, Feng G, Hu YB, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi SH, Svenning JC, Ma KP (2021) The global significance of biodiversity science in China: An overview. National Science Review, 8, nwab032. |
[26] | Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M, Chen F, Coners H, Foken T, Gerken T, Graf HF, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, Kuzyakov Y, Lai Z, Lehnert L, Leuschner C, Li X, Liu J, Liu S, Ma Y, Miehe S, Mosbrugger V, Noltie HJ, Schmidt J, Spielvogel S, Unteregelsbacher S, Wang Y, Willinghöfer S, Xu X, Yang Y, Zhang S, Opgenoorth L, Wesche K (2019) The Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem. Science of the Total Environment, 648, 754-771. |
[27] | Niu KC, Choler P, Zhao BB, Du GZ (2009) The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands. Functional Ecology, 23, 274-283. |
[28] | Niu KC, Chu CJ, Wang ZH (2022) Dynamic niche: A new foundation for rebuilding theory of community ecology. Scientia Sinica (Vitae), 52, 403-417. (in Chinese with English abstract) |
[牛克昌, 储诚进, 王志恒 (2022) 动态生态位: 构建群落生态学理论的新框架. 中国科学: 生命科学, 52, 403-417.] | |
[29] | Niu KC, He JS, Lechowicz MJ (2016a) Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 53, 1554-1564. |
[30] | Niu KC, He JS, Zhang ST, Lechowicz MJ (2016b) Tradeoffs between forage quality and soil fertility: Lessons from Himalayan rangelands. Agriculture, Ecosystems & Environment, 234, 31-39. |
[31] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
DOI |
|
[32] | Niu KC, Zhang ST, Lechowicz MJ (2020) Harsh environmental regimes increase the functional significance of intraspecific variation in plant communities. Functional Ecology, 34, 1666-1677. |
[33] | Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect Ecology:Behavior, Populations and Communities. Cambridge University Press, Cambridge. |
[34] |
Scherber C, Mwangi PN, Temperton VM, Roscher C, Schumacher J, Schmid B, Weisser WW (2006) Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia, 147, 489-500.
PMID |
[35] | Tilman D, Reich PB, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences, USA. 109, 10394-10397. |
[36] |
Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
PMID |
[37] | van der Plas F (2019) Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 1220-1245. |
[38] | Wan XL, Zhang WG (2006) Feeding habit and spatial pattern of Gynaephora alpherakii larvae. Acta Agrestia Sinica, 14, 84-88. (in Chinese with English abstract) |
[万秀莲, 张卫国 (2006) 草原毛虫幼虫的食性及其空间格局. 草地学报, 14, 84-88.]
DOI |
|
[39] | Wang L, Delgado-Baquerizo M, Wang DL, Isbell F, Liu J, Feng C, Liu JS, Zhong ZW, Zhu H, Yuan X, Chang Q, Liu C (2019) Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences, USA. 116, 6187-6192. |
[40] | Wang ZH, Zheng H, Chu CJ, Chen DM, Liu XJ, Wang SP, Niu KC, Tang ZY, Zhou J, Li YQ, Zhang BW, Feng YH (2021) Biodiversity and ecosystem function and service. In: Ecosytem Ecology: Reviews and Prespective (eds Fang JY, Liu LL), pp. 161-212. Higher Education Press, Beijing. FangJY, Liu LL), pp. 161-212. Higher Education Press, Beijing. (in Chinese) |
[王志恒, 郑华, 储诚进, 陈迪马, 刘晓娟, 王少鹏, 牛克昌, 唐志尧, 周健, 李耀琪, 张兵伟, 冯禹昊 (2021) 生物多样性与生态系统功能及服务. 生态系统生态学: 回顾与展望(方精云, 刘玲莉主编), 第161-212页.高等教育出版社, 北京.] | |
[41] | Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science, 27, 646-653. |
[42] | Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999) Plant removals in perennial grassland: Vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs, 69, 535-568. |
[43] | Xi XQ, Griffin JN, Sun SC (2013) Grasshoppers amensalistically suppress caterpillar performance and enhance plant biomass in an alpine meadow. Oikos, 122, 1049-1057. |
[44] | Yan L, Liu ZK, Mei GR, Lan JH (1995) Feed selection and utilization of grassland caterpillar in the field cage condition. Acta Agrestia Sinica, 3, 257-268. (in Chinese with English abstract) |
[严林, 刘振魁, 梅洁人, 兰景华 (1995) 野外扣笼条件下草原毛虫对食物的选择. 草地学报, 3, 257-268.]
DOI |
|
[45] | Yang AL (2002) Serious damage of grassland caterpillars in parts of the Qinghai-Tibet Plateau. Pratacultural Science, 19(5), 73. (in Chinese) |
[杨爱莲 (2002) 西藏青海部分地区草原毛虫为害严重. 草业科学, 19(5), 73.] | |
[46] | Yu XC, Chen KL, Yao BQ, Ma Z, Wang WY, Wang HC, Zhao XQ, Zhou HK (2016) Effects of simulated warming on the growth and development of Gynaephora menyuanensis larvae. Acta Ecologica Sinica, 36, 8002-8007. (in Chinese with English abstract) |
[余欣超, 陈珂璐, 姚步青, 马真, 王文颖, 王慧春, 赵新全, 周华坤 (2016) 模拟增温下门源草原毛虫幼虫生长发育特征. 生态学报, 36, 8002-8007.] | |
[47] | Zhang QL, Yuan ML (2013) Research status and prospect of grassland caterpillars (Lepidoptera: Lymantriidae). Pratacultural Science, 30, 638-646. (in Chinese with English abstract) |
[张棋麟, 袁明龙 (2013) 草原毛虫研究现状与展望. 草业科学, 30, 638-646.] | |
[48] |
Zhang ZH, Zhou HK, Zhao XQ, Yao BQ, Ma Z, Dong QM, Zhang ZH, Wang WY, Yang YW (2018) Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiversity Science, 26, 111-129. (in Chinese with English abstract)
DOI |
[张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武 (2018) 青藏高原高寒草地生物多样性与生态系统功能的关系. 生物多样性, 26, 111-129.]
DOI |
|
[49] | Zhang ZL, Niu KC, Liu XD, Jia P, Du GZ (2014) Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. Journal of Plant Ecology, 7, 231-239. |
[50] | Zheng LL, Song MH, Yin TF, Yu FH (2016) Feeding preference of Gynaephora menyuanensis and its relationships with plant carbon and nitrogen contents in an alpine meadow on the Tibetan Plateau. Acta Ecologica Sinica, 36, 2319-2326. (in Chinese with English abstract) |
[郑莉莉, 宋明华, 尹谭凤, 于飞海 (2016) 青藏高原高寒草甸门源草原毛虫取食偏好及其与植物C、N含量的关系. 生态学报, 36, 2319-2326.] | |
[51] | Zhong ZW, Li XF, Wang DL (2021) Research progresses of plant-herbivore interactions. Chinese Journal of Plant Ecology, 45, 1036-1048. (in Chinese with English abstract) |
[钟志伟, 李晓菲, 王德利 (2021) 植物-植食性动物相互关系研究进展. 植物生态学报, 45, 1036-1048.]
DOI |
|
[52] | Zhou HK, Wang XH, Wen J, Zhu JF, Ye X, Wang WY, Chen Z (2012) The relationship between damage of grassland caterpillar and climate factors in the Maqin County of Guoluo Prefecture. Pratacultural Science, 29, 128-134. (in Chinese with English abstract) |
[周华坤, 王晓辉, 温军, 朱锦福, 叶鑫, 王文颖, 陈哲 (2012) 果洛州玛沁县草原毛虫虫害发生与气候因子的相互关系. 草业科学, 29, 128-134.] | |
[53] | Zhou XH, Wu WJ, Niu KC, Du GZ (2019) Realistic loss of plant species diversity decreases soil quality in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment, 279, 25-32. |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[5] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[6] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[7] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[8] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[9] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[10] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[11] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[12] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[13] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[14] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[15] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn