生物多样性 ›› 2013, Vol. 21 ›› Issue (1): 111-116. DOI: 10.3724/SP.J.1003.2013.06187
收稿日期:
2012-10-08
接受日期:
2012-12-27
出版日期:
2013-01-20
发布日期:
2013-02-04
Caroline A. Polgar, Richard B. Primack*()
Received:
2012-10-08
Accepted:
2012-12-27
Online:
2013-01-20
Published:
2013-02-04
Contact:
B. Primack Richard
摘要:
物候学是研究自然事件的周期性变化的科学, 是一门古老的传统学科。在全球温带地区, 春季开始时间已经显著提前。随着气候变化日益得到关注, 物候学也重新引起了人们的重视。植物在春季的展叶对温度特别敏感, 展叶时间决定着许多基本的生态系统过程, 因此, 近年来生态学家们对展叶物候学表现出极大兴趣。本文综述了最新文献, 介绍了展叶物候的不同研究方法、温带木本植物展叶的控制因子, 以及气候变化对展叶物候的影响。除了传统的地面监测方法之外, 一些使用遥感和专用相机的新方法已经被用来在更大尺度上监测春季开始时间。未来的研究工作应聚焦于植物的展叶物候如何应对气候变化, 及其对不同营养级物种间相互作用的影响。
(2013) 温带森林展叶物候学①. 生物多样性, 21, 111-116. DOI: 10.3724/SP.J.1003.2013.06187.
Caroline A. Polgar, Richard B. Primack (2013) Leaf out phenology in temperate forests. Biodiversity Science, 21, 111-116. DOI: 10.3724/SP.J.1003.2013.06187.
图1 通过传统的地面监测拍摄的展叶图片(Richard B. Primack摄于美国Massachusetts州波士顿阿诺德植物园)
Fig. 1 Leaf out pictures taken by scientists monitoring leafing in a traditional on-the-ground study (taken by Richard B. Primack at the Arnold Arboretum in Boston, Massachusetts USA)
图2 通过卫星数据拟合的美国东北部新英格兰地区的森林冠层生长过程。植被数据根据逻辑斯蒂S型增长函数来拟合, 植被绿色的开始和消退时间通过回归曲线的半最大值获得。数据点的误差大小通过符号的深浅来指示, 黑色菱形表示误差最小, 白色菱形表示误差最大(图来源于Fisher et al., 2006)。
Fig. 2 A graph showing the growth of the leaf canopy over a growing seasons using satellite data from a location in New England, in the northeastern United States. The vegetation data is fit to logistic growth sigmoid functions and the onset and offset of greenness are calculated at the half-maxima of the curve. The quality of the data points is indicated by the symbol shading, with black diamonds having the least error and white diamonds having the most error. Figure from Fisher et al., 2006).
图3 2011年春天, Massachusetts州康科德地区民兵导弹国家历史遗址公园的林冠层在3周中的变化(Richard Primack摄)
Fig. 3 A sequence of photos taken over a three week period in the spring of 2011 showing the development of the leaf canopy at Minute Man National Historical Site, a park in Concord, Massachusetts (Photos by Richard B. Primack)
图4 温暖期过后的霜冻天气对美国东北部一个山坡的林冠层造成了损害。对温暖天气响应快速的树种如糖枫, 展叶提早, 叶片遭受损害, 而展叶相对保守的物种, 比如美国山毛榉, 生长正常(图片来源于Hufkens et al., 2012b)。
Fig. 4 A hillside in the northeastern United States showing the effects of a late frost following a period of warming. Trees that responded more quickly to warm temperatures, such as sugar maples, suffered damage to early leaves, while more conservative leafing species, such as American beech, fared better and are developing normally. Figure from (Hufkens et al., 2012b).
Fig. 5 Leaf out pictures taken at the Arnold Arboretum in Boston, Massachusetts USA by scientists monitoring leafing in a traditional on-the-ground study (taken by Dr. Richard B. Primack)
Fig. 6 A graph showing the growth of the leaf canopy over a growing season using satellite data from a location in New England, in the northeastern United States. The vegetation data is fit to logistic growth sigmoid functions and the onset and offset of greenness are calculated at the half-maxima of the curve. The quality of the data points is indicated by the symbol shading, with black diamonds having the least error and white diamonds having the most error (Figure from Fisher et al., 2006).
Fig. 7 A sequence of photos taken over a three week period in the spring of 2011 showing the development of the leaf canopy at Minute Man National Historical Site, a park in Concord, Massachusetts, with a bridge, a monument, and statue as points of reference. The leaf out times of individual trees can be seen in these photos. Photos by Richard B. Primack.
Fig. 8 A hillside in the northeastern United States showing the effects of a late frost following a period of warming. Trees that responded more quickly to warm temperatures, such as sugar maples, suffered damage to early leaves, while more conservative leafing species, such as American beech, fared better and are developing normally. Figure from (Hufkens et al., 2012b)
1 | Ahl DE, Gower ST, Burrows SN, Shabanov NV, Myneni RB, Knyazikhin Y (2006) Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS.Remote Sensing of Environment, 104, 88-95. |
2 | Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants.Proceedings of the National Academy of Sciences, USA, 108, 20645-20649. |
3 | Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?Journal of Animal Ecology, 78, 73-83. |
4 | Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin.Proceedings of the National Academy of Sciences, USA, 96, 9701-9704. |
5 | Caffarra A, Donnelly A (2010) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst.International Journal of Biometeorology, DOI:10.1007/s00484-00010-00386-00481. |
6 | Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change.Trends in Ecology and Evolution, 22, 357-365. |
7 | Coyle DR, Jordan MS, Raffa KF (2010) Host plant phenology affects performance of an invasive weevil, Phyllobius oblongus (Coleoptera: Curculionidae), in a northern hardwood forest.Environmental Entomology, 39, 1539-1544. |
8 | Crimmins MA, Crimmins TM (2008) Monitoring plant phenology using digital repeat photography.Environmental Management, 41, 949-958. |
9 | Delbart N, Picard G, Le Toans T, Kergoat L, Quegan S, Woodward I, Dye D, Fedotova V (2008) Spring phenology in boreal Eurasia over a nearly century time scale.Global Change Biology, 14, 603-614. |
10 | Egusa S, Nishida T, Fujisaki K, Sawada H (2006) Spatio-temporal abundance of flushing leaves shapes host selection in the willow leaf beetle, Plagiodera versicolora.Entomologia Experimentalis et Applicata, 120, 229-237. |
11 | Farmer RE (1968) Sweetgum dormancy release: effects of chilling photoperiod and genotype.Physiologia Plantarum, 21, 1241-1248. |
12 | Fisher JI, Mustard JF, Vadeboncoeur MA (2006) Green leaf phenology at Landsat resolution: scaling from the field to the satellite.Remote Sensing of Environment, 100, 265-279. |
13 | Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution.Philosophical Transactions of the Royal Society B—Biological Sciences, 365, 3101-3112. |
14 | Fridley JD (2012) Extended leaf phenology and the autumn niche in deciduous forest invasions.Nature, 485, 359-362. |
15 | Ghelardini L, Santini A, Black-Samuelsson S, Myking T, Falusi M (2010) Bud dormancy release in elm (Ulmus spp) clones: a case study of photoperiod and temperature responses.Tree Physiology, 30, 264-274. |
16 | Gonsamo A, Chen JM, Wu CY, Dragoni D (2012) Predicting deciduous forest carbon uptake phenology by upscaling FLUXNET measurements using remote sensing data.Agricultural and Forest Meteorology, 165, 127-135. |
17 | Gu LH, Hanson PJ, Mac Post W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world?BioScience, 58, 253-262. |
18 | Harrington RA, Brown BJ, Reich PB (1989) Ecophysiology of exotic and native shrubs in southern Wisconsin 1. Relationship of leaf characteristics, resource availability, and phenology to seasonal patterns of carbon gain.Oecologia, 80, 356-367. |
19 | Hufkens K, Friedl M, Sonnentag O, Braswell BH, Milliman T, Richardson AD (2012a) Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology.Remote Sensing of Environment, 117, 307-321. |
20 | Hufkens K, Friedl MA, Keenan TF, Sonnentag O, Bailey A, O'Keefe J, Richardson AD (2012b) Ecological impacts of a widespread frost event following early spring leaf-out.Global Change Biology, 18, 2365-2377. |
21 | Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees.Journal of Applied Ecology, 29, 597-604. |
22 | Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming.Philosophical Transactions of the Royal Society B—Biological Sciences, 365, 3247-3260. |
23 | Ide R, Oguma H (2010) Use of digital cameras for phenological observations.Ecological Informatics, 5, 339-347. |
24 | Körner C, Basler D (2010) Phenology under global warming.Science, 327, 1461-1462. |
25 | Linkosalo T, Häkkinen R, Hänninen H (2006) Models of the spring phenology of boreal and temperate trees: Is there something missing?Tree Physiology, 26, 1165-1172. |
26 | Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996.International Journal of Biometeorology, 44, 76-81. |
27 | Miller-Rushing AJ, Lloyd-Evans TL, Primack RB, Satzinger P (2008) Bird migration times, climate change, and changing population sizes.Global Change Biology, 14, 1959-1972. |
28 | Morin X, Lechowicz MJ, Augspurger C, O' Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree |
29 | species during the 21st century.Global Change Biology, 15, 961-975. |
30 | Partanen J (2004) Dependence of photoperiodic response of growth cessation on the stage of development in Picea abies and Betula pendula seedlings.Forest Ecology and Management, 188, 137-148. |
31 | Perry TO (1971) Dormancy of trees in winter.Science, 171, 29-36. |
32 | Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change.Trends in Ecology and Evolution, 20, 503-510. |
33 | Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems.New Phytologist, 191, 926-941. |
34 | Primack RB, Miller-Rushing AJ (2012) Uncovering, collecting, and analyzing records to investigate the ecological impacts of climate change: a template from Thoreau's Concord.BioScience, 62, 170-181. |
35 | Reed BC, Brown JF, Vanderzee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery.Journal of Vegetation Science, 5, 703-714. |
36 | Richardson AD, Bailey AS, Denny EG, Martin CW, O'Keefe J (2006) Phenology of a northern hardwood forest canopy.Global Change Biology, 12, 1174-1188. |
37 | Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV (2009) Near-surface remote sensing of spatial and temporal variation in canopy phenology.Ecological Applications, 19, 1417-1428. |
38 | Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change.Global Change Biology, 6, 407-416. |
39 | Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America.International Journal of Climatology, 30, 1614-1626. |
40 | Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology.Proceedings of the Royal Society of London Series B—Biological Sciences, 268, 289-294. |
41 | Wang HJ, Dai JH, Ge QS (2012) The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007.Science China-Earth Sciences, 55, 991-1000. |
42 | Willis CG, Ruhfel BR, Primack RB, Miller-Rushing AJ, Losos JB, Davis CC (2010) Favorable climate change response explains non-native species' success in Thoreau's woods.PLOS ONE, 5, e8878. |
43 | Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change.Nature, 485, 494-497. |
[1] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[4] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[5] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[6] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[7] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[8] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[9] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[10] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[11] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[12] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[13] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[14] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
[15] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn