生物多样性 ›› 2013, Vol. 21 ›› Issue (6): 699-708. DOI: 10.3724/SP.J.1003.2013.10082
高原, 赖子尼*(), 李捷, 王超, 曾艳艺, 刘乾甫, 杨婉玲
收稿日期:
2013-04-03
接受日期:
2013-09-03
出版日期:
2013-11-20
发布日期:
2013-12-02
通讯作者:
赖子尼
基金资助:
Yuan Gao, Zini Lai*(), Jie Li, Chao Wang, Yanyi Zeng, Qianfu Liu, Wanling Yang
Received:
2013-04-03
Accepted:
2013-09-03
Online:
2013-11-20
Published:
2013-12-02
Contact:
Lai Zini
摘要:
修建水坝极大地影响了水体的自净能力, 对渔业资源和水生生物多样性造成了严重影响。为分析人为建坝对浮游动物群落结构的影响, 作者于2007年10月开展了针对连江12个梯级水坝影响江段的大规模的水生态调查, 分析了12个代表样点浮游动物各大类群的种类分布和优势种的组成, 以及浮游动物丰度、生物量和多样性指数的空间分布, 探讨了浮游动物群落结构与环境因子的关系。调查分别记录到原生动物、轮虫类、枝角类及桡足类19、25、17及15种, S2-S4采样点种类数最多, S5采样点最少。连江浮游动物的优势种有21种, 其中原生动物5种, 轮虫类9种, 枝角类和桡足类分别为4种和3种, 代表种类有多态喇叭虫(Stentor polymorphrus)、萼花臂尾轮虫(Brachionus calyciflorus)、长额象鼻溞(Bosmina longirostris)及胸饰外剑水蚤(Ectocyclops phaleratus)等。浮游动物的种群丰度在921.00-2,160.35 ind./L范围内波动, S5采样点最高, S1采样点最低; 生物量在0.198-0.699 mg/L范围内波动, S5采样点最高, S1采样点最低。浮游动物各大类群的Margalef物种丰富度指数、Shannon-Wiener多样性指数及Pielou均匀度指数基本呈现上游较高、中下游较低的分布特征。PCA分析表明: 连江浮游动物群落与氨氮、高锰酸盐指数、pH和透明度等环境因素显著相关。由此可见, 连江梯级开发形成的不同生境中营养盐等诸多因素的显著差异是影响浮游动物多样性空间分布的重要原因。
高原, 赖子尼, 李捷, 王超, 曾艳艺, 刘乾甫, 杨婉玲 (2013) 连江浮游动物多样性的空间分布. 生物多样性, 21, 699-708. DOI: 10.3724/SP.J.1003.2013.10082.
Yuan Gao,Zini Lai,Jie Li,Chao Wang,Yanyi Zeng,Qianfu Liu,Wanling Yang (2013) Spatial pattern of zooplankton diversity in Lianjiang River, Guangdong Province, China. Biodiversity Science, 21, 699-708. DOI: 10.3724/SP.J.1003.2013.10082.
种数 Species number | 采样点 Sampling sites | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | |
原生动物 Protozoa | 7 | 7 | 7 | 7 | 4 | 6 | 6 | 6 | 5 | 5 | 5 | 5 |
轮虫类 Rotatoria | 9 | 11 | 13 | 14 | 8 | 13 | 13 | 13 | 12 | 11 | 10 | 10 |
枝角类 Cladocera | 7 | 8 | 7 | 6 | 2 | 6 | 5 | 5 | 5 | 4 | 4 | 3 |
桡足类 Copepoda | 7 | 7 | 6 | 6 | 3 | 5 | 5 | 4 | 3 | 4 | 3 | 3 |
浮游动物 Zooplankton | 30 | 33 | 33 | 33 | 17 | 30 | 29 | 28 | 25 | 24 | 22 | 21 |
表1 连江各采样点浮游动物物种数
Table 1 Spatial variations in species richness of different groups of zooplankton in the Lianjiang River
种数 Species number | 采样点 Sampling sites | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | |
原生动物 Protozoa | 7 | 7 | 7 | 7 | 4 | 6 | 6 | 6 | 5 | 5 | 5 | 5 |
轮虫类 Rotatoria | 9 | 11 | 13 | 14 | 8 | 13 | 13 | 13 | 12 | 11 | 10 | 10 |
枝角类 Cladocera | 7 | 8 | 7 | 6 | 2 | 6 | 5 | 5 | 5 | 4 | 4 | 3 |
桡足类 Copepoda | 7 | 7 | 6 | 6 | 3 | 5 | 5 | 4 | 3 | 4 | 3 | 3 |
浮游动物 Zooplankton | 30 | 33 | 33 | 33 | 17 | 30 | 29 | 28 | 25 | 24 | 22 | 21 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
S2 | 0.26 | ||||||||||
S3 | 0.31 | 0.38 | |||||||||
S4 | 0.26 | 0.38 | 0.43 | ||||||||
S5 | 0.18 | 0.30 | 0.32 | 0.35 | |||||||
S6 | 0.22 | 0.33 | 0.37 | 0.40 | 0.31 | ||||||
S7 | 0.26 | 0.31 | 0.44 | 0.41 | 0.39 | 0.37 | |||||
S8 | 0.23 | 0.41 | 0.45 | 0.45 | 0.45 | 0.49 | 0.50 | ||||
S9 | 0.22 | 0.25 | 0.38 | 0.38 | 0.45 | 0.38 | 0.50 | 0.47 | |||
S10 | 0.20 | 0.29 | 0.35 | 0.46 | 0.46 | 0.32 | 0.47 | 0.44 | 0.53 | ||
S11 | 0.18 | 0.30 | 0.30 | 0.27 | 0.30 | 0.33 | 0.38 | 0.28 | 0.42 | 0.39 | |
S12 | 0.19 | 0.28 | 0.31 | 0.31 | 0.41 | 0.28 | 0.35 | 0.32 | 0.48 | 0.45 | 0.72 |
表2 连江各采样点浮游动物群落相似性系数
Table 2 Similarity coefficients of zooplankton communities among 12 sampling sites in the Lianjiang River
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
S2 | 0.26 | ||||||||||
S3 | 0.31 | 0.38 | |||||||||
S4 | 0.26 | 0.38 | 0.43 | ||||||||
S5 | 0.18 | 0.30 | 0.32 | 0.35 | |||||||
S6 | 0.22 | 0.33 | 0.37 | 0.40 | 0.31 | ||||||
S7 | 0.26 | 0.31 | 0.44 | 0.41 | 0.39 | 0.37 | |||||
S8 | 0.23 | 0.41 | 0.45 | 0.45 | 0.45 | 0.49 | 0.50 | ||||
S9 | 0.22 | 0.25 | 0.38 | 0.38 | 0.45 | 0.38 | 0.50 | 0.47 | |||
S10 | 0.20 | 0.29 | 0.35 | 0.46 | 0.46 | 0.32 | 0.47 | 0.44 | 0.53 | ||
S11 | 0.18 | 0.30 | 0.30 | 0.27 | 0.30 | 0.33 | 0.38 | 0.28 | 0.42 | 0.39 | |
S12 | 0.19 | 0.28 | 0.31 | 0.31 | 0.41 | 0.28 | 0.35 | 0.32 | 0.48 | 0.45 | 0.72 |
优势种 Dominant species | 优势度 Dominance |
---|---|
原生动物 Protozoa | |
多态喇叭虫 Stentor polymorphrus | 0.209 |
旋回侠盗虫 Strobilidium gyrans | 0.206 |
王氏似铃壳虫 Tintinnopsis wangi | 0.071 |
腔裸口虫 Holophrya atra | 0.026 |
大草履虫 Paramecium caudatum | 0.025 |
轮虫类 Rotatoria | |
萼花臂尾轮虫 Brachionus calyciflorus | 0.252 |
针簇多肢轮虫 Polyarthra trigla | 0.142 |
螺形龟甲轮虫 Keratella cochlearis | 0.117 |
镰状臂尾轮虫 Brachionus falcatus | 0.049 |
角突臂尾轮虫 B. angularis | 0.040 |
长足轮虫 Rotaria neptunia | 0.039 |
十指平甲轮虫 Platyias militaris | 0.039 |
浦达臂尾轮虫 Brachionus budapestiensis | 0.026 |
裂足臂尾轮虫 B. diversicornis | 0.025 |
枝角类 Cladocera | |
长额象鼻溞 Bosmina longirostris | 0.145 |
多刺裸腹溞 Moina macrocopa | 0.046 |
脆弱象鼻溞 Bosmina fatalis | 0.039 |
圆形盘肠溞 Chydorus sphaericus | 0.020 |
桡足类 Copepoda | |
胸饰外剑水蚤 Ectocyclops phaleratus | 0.087 |
汤匙华哲水蚤 Sinocalanus dorrii | 0.042 |
模式有爪猛水蚤 Onychocamptus mohammed | 0.029 |
表3 连江浮游动物优势种
Table 3 Dominant species of zooplankton in the Lianjiang River
优势种 Dominant species | 优势度 Dominance |
---|---|
原生动物 Protozoa | |
多态喇叭虫 Stentor polymorphrus | 0.209 |
旋回侠盗虫 Strobilidium gyrans | 0.206 |
王氏似铃壳虫 Tintinnopsis wangi | 0.071 |
腔裸口虫 Holophrya atra | 0.026 |
大草履虫 Paramecium caudatum | 0.025 |
轮虫类 Rotatoria | |
萼花臂尾轮虫 Brachionus calyciflorus | 0.252 |
针簇多肢轮虫 Polyarthra trigla | 0.142 |
螺形龟甲轮虫 Keratella cochlearis | 0.117 |
镰状臂尾轮虫 Brachionus falcatus | 0.049 |
角突臂尾轮虫 B. angularis | 0.040 |
长足轮虫 Rotaria neptunia | 0.039 |
十指平甲轮虫 Platyias militaris | 0.039 |
浦达臂尾轮虫 Brachionus budapestiensis | 0.026 |
裂足臂尾轮虫 B. diversicornis | 0.025 |
枝角类 Cladocera | |
长额象鼻溞 Bosmina longirostris | 0.145 |
多刺裸腹溞 Moina macrocopa | 0.046 |
脆弱象鼻溞 Bosmina fatalis | 0.039 |
圆形盘肠溞 Chydorus sphaericus | 0.020 |
桡足类 Copepoda | |
胸饰外剑水蚤 Ectocyclops phaleratus | 0.087 |
汤匙华哲水蚤 Sinocalanus dorrii | 0.042 |
模式有爪猛水蚤 Onychocamptus mohammed | 0.029 |
图3 连江浮游动物丰度与采样点的主成分分析二维排序图
Fig. 3 Ordination diagram of the first two axes of principle correspondence analysis of zooplankton and sampling sites in the Lianjiang River
图6 连江浮游动物丰度与环境因子的主成分分析排序图
Fig. 6 Ordination diagram of the first two axes of principle correspondence analysis of zooplankton and environmental factors in the Lianjiang River
SPAX1 | SPAX2 | SPAX3 | SPAX4 | ENAX1 | ENAX2 | ENAX3 | ENAX4 | |
---|---|---|---|---|---|---|---|---|
SPAX2 | 0 | |||||||
SPAX3 | 0 | 0 | ||||||
SPAX4 | 0 | 0 | 0 | |||||
ENAX1 | 0.97 | 0.02 | -0.05 | -0.13 | ||||
ENAX2 | 0.02 | 0.68 | 0.13 | 0.06 | 0.02 | |||
ENAX3 | -0.04 | 0.09 | 0.97 | -0.15 | -0.05 | 0.13 | ||
ENAX4 | -0.16 | 0.05 | -0.18 | 0.78 | -0.16 | 0.07 | -0.19 | |
透明度 Transparence | -0.39 | 0.17 | 0.12 | -0.34 | -0.41 | 0.24 | 0.13 | -0.43 |
pH | -0.43 | 0.15 | 0.81 | -0.04 | -0.44 | 0.22 | 0.84 | -0.05 |
溶解氧 Dissolved oxygen | -0.30 | -0.10 | 0.43 | -0.10 | -0.31 | -0.15 | 0.45 | -0.12 |
总磷 Total phosphorus | -0.13 | 0.02 | -0.31 | 0.31 | -0.14 | 0.02 | -0.32 | 0.39 |
总氮 Total nitrogen | 0.20 | 0.23 | 0.31 | 0.50 | 0.21 | 0.34 | 0.32 | 0.64 |
氨氮 Ammonia nitrogen | 0.72 | -0.17 | 0.26 | -0.23 | 0.74 | -0.24 | 0.27 | -0.30 |
高锰酸盐指数 Permanganate index | 0.39 | -0.17 | 0.04 | 0.02 | 0.40 | -0.25 | 0.04 | 0.03 |
硅酸盐 Silicate | -0.02 | 0.17 | 0.12 | 0.57 | -0.02 | 0.25 | 0.12 | 0.74 |
透明度 Transparence | pH | 溶解氧 Dissolved oxygen | 总磷 Total phosphorus | 总氮 Total nitrogen | 氨氮 Ammonia nitrogen | 高锰酸盐指数 Permanganate index | ||
透明度 Transparence | ||||||||
pH | 0.42 | |||||||
溶解氧 Dissolved oxygen | 0.64 | 0.63 | ||||||
总磷 Total phosphorus | -0.50 | -0.16 | -0.58 | |||||
总氮 Total nitrogen | -0.30 | 0.36 | 0.16 | 0.13 | ||||
氨氮 Ammonia nitrogen | -0.25 | -0.17 | -0.10 | -0.50 | 0.01 | |||
高锰酸盐指数 Permanganate index | -0.58 | -0.36 | -0.17 | 0.05 | -0.01 | 0.18 | ||
硅酸盐 Silicate | -0.39 | 0.05 | -0.31 | 0.39 | 0.42 | -0.08 | 0.16 |
表4 连江浮游动物主要优势种丰度、环境因子前两个主成分分析排序轴与环境因子之间的相关系数
Table 4 Correlation coefficient for abundance of zooplankton axis1 and axis2, environment factors axis1and axis2, and environment factors in the Lianjiang River
SPAX1 | SPAX2 | SPAX3 | SPAX4 | ENAX1 | ENAX2 | ENAX3 | ENAX4 | |
---|---|---|---|---|---|---|---|---|
SPAX2 | 0 | |||||||
SPAX3 | 0 | 0 | ||||||
SPAX4 | 0 | 0 | 0 | |||||
ENAX1 | 0.97 | 0.02 | -0.05 | -0.13 | ||||
ENAX2 | 0.02 | 0.68 | 0.13 | 0.06 | 0.02 | |||
ENAX3 | -0.04 | 0.09 | 0.97 | -0.15 | -0.05 | 0.13 | ||
ENAX4 | -0.16 | 0.05 | -0.18 | 0.78 | -0.16 | 0.07 | -0.19 | |
透明度 Transparence | -0.39 | 0.17 | 0.12 | -0.34 | -0.41 | 0.24 | 0.13 | -0.43 |
pH | -0.43 | 0.15 | 0.81 | -0.04 | -0.44 | 0.22 | 0.84 | -0.05 |
溶解氧 Dissolved oxygen | -0.30 | -0.10 | 0.43 | -0.10 | -0.31 | -0.15 | 0.45 | -0.12 |
总磷 Total phosphorus | -0.13 | 0.02 | -0.31 | 0.31 | -0.14 | 0.02 | -0.32 | 0.39 |
总氮 Total nitrogen | 0.20 | 0.23 | 0.31 | 0.50 | 0.21 | 0.34 | 0.32 | 0.64 |
氨氮 Ammonia nitrogen | 0.72 | -0.17 | 0.26 | -0.23 | 0.74 | -0.24 | 0.27 | -0.30 |
高锰酸盐指数 Permanganate index | 0.39 | -0.17 | 0.04 | 0.02 | 0.40 | -0.25 | 0.04 | 0.03 |
硅酸盐 Silicate | -0.02 | 0.17 | 0.12 | 0.57 | -0.02 | 0.25 | 0.12 | 0.74 |
透明度 Transparence | pH | 溶解氧 Dissolved oxygen | 总磷 Total phosphorus | 总氮 Total nitrogen | 氨氮 Ammonia nitrogen | 高锰酸盐指数 Permanganate index | ||
透明度 Transparence | ||||||||
pH | 0.42 | |||||||
溶解氧 Dissolved oxygen | 0.64 | 0.63 | ||||||
总磷 Total phosphorus | -0.50 | -0.16 | -0.58 | |||||
总氮 Total nitrogen | -0.30 | 0.36 | 0.16 | 0.13 | ||||
氨氮 Ammonia nitrogen | -0.25 | -0.17 | -0.10 | -0.50 | 0.01 | |||
高锰酸盐指数 Permanganate index | -0.58 | -0.36 | -0.17 | 0.05 | -0.01 | 0.18 | ||
硅酸盐 Silicate | -0.39 | 0.05 | -0.31 | 0.39 | 0.42 | -0.08 | 0.16 |
1 | Badosa A, Boix D, Brucet S, López-Flores R, Gascón S, Quintana XD (2007) Zooplankton taxonomic and size diversity in Mediterranean coastal lagoons (NE Iberian Peninsula): influence of hydrology, nutrient composition, food resource availability and predation. Estuarine,Coastal and Shelf Science, 71, 335-346. |
2 | Chen XM (陈雪梅) (1981) Biomass calculation of freshwater Copepoda.Acta Hydrobiologica Sinica(水生生物学集刊), 7, 397-408. (in Chinese with English abstract) |
3 | Du P (杜萍), Liu JJ (刘晶晶), Xu XQ (徐晓群), Chen QZ (陈全震), Zeng JN (曾江宁), Jiang ZB (江志兵), Wang Q (王琪) (2011) Comparison studies on zooplankton ecological characteristics of Xiangshan Bay in different habitats in winter.Fisheries Science & Technology Information(水产科技情报), 38, 92-99. (in Chinese) |
4 | Echaniz SA, Vignatti AM, De Paggi SJ, Paggi JC, Pilati A (2006) Zooplankton seasonal abundance of South American saline shallow lakes.International Review of Hydrobiology, 91, 86-100. |
5 | Havel JE, Medley KA, Dickerson KD, Angradi TR, Bolgrien DW, Bukaveckas PA, Jicha TM (2009) Effect of main-stem dams on zooplankton communities of the Missouri River (USA).Hydrobiologia, 628, 121-135. |
6 | Huang XF (黄祥飞) (1981) Application of the simplified method of weight determination to various species of planktonic rotifers in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica(水生生物学集刊), 7, 409-416. (in Chinese with English abstract) |
7 | Huang XF (黄祥飞), Hu CY (胡春英) (1986) Body length-weight regression relationship in freshwater cladocera. In: Symposium on Crustacean Research in China (甲壳动物学论文集) (ed. Editorial Committee of Symposium on Crustacea)(甲壳动物学论文集编辑委员会)), pp. 147-157. Science Press, Beijing. (in Chinese with English abstract ) |
8 | Ji HH (纪焕红), Ye SF (叶属峰) (2006) Ecological distribution characteristics of zooplankton and its relationship with environmental factors in the Changjiang River estuary.Marine Sciences(海洋科学), 30(6), 23-30. (in Chinese with English abstract) |
9 | Li J (李捷), Luo JR (罗建仁), Li XH (李新辉), Tan XC (谭细畅), Wang C (王超), Guo SC (郭绍常) (2007) Investigation of fish resources and analysis of resources decline along Lianjiang River.Freshwater Fisheries(淡水渔业), 37(3), 49-53. (in Chinese with English abstract) |
10 | Li J (李捷), Li XH (李新辉), Jia XP (贾晓平), Tan XC (谭细畅), Wang C (王超), Li YF (李跃飞), Shao XF (邵晓风) (2012) Relationship between fish community diversity and environmental factors in the Lianjiang River, Guangdong, China. Acta Ecologica Sinica(生态学报), 32, 5795-5805. (in Chinese with English abstract) |
11 | Ma KP (马克平) (1994) The methods of biotic community diversity measurement. In: Principles and Methodologies of Biodiversity Studies (生物多样性研究的原理与方法)(ed. Biodiversity Committee, Chinese Academy of Sciences (中国科学院生物多样性委员会), pp. 147-157. China Science and Technology Press, Beijing. (in Chinese) |
12 | Margalef DR (1958) Information theory in ecology.General Systems, 3, 36-71. |
13 | Mei XX (梅象信), Xu ZH (徐正会), Zhang JL (张继玲), Zhao YX (赵宇翔) (2006) Ant species diversity on east slope of Xishan Forest Park in Kunming. Forest Research(林业科学研究), 19, 170-176. (in Chinese with English abstract) |
14 | Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-Dimethyly formamide.Plant Physiology, 65, 478-479. |
15 | Pan JH (潘炯华) (1987) Fishery Resources of the Beijiang River in Pearl River System (珠江水系北江渔业资源). Guangdong Science & Technology Press, Guangzhou. (in Chinese) |
16 | Pielou EC (1966) Species-diversity and pattern-diversity in the study of ecological succession.Journal of Theoretical Biology, 10, 370-383. |
17 | Shannon CE, Weaver W (1963) The Mathematical Theory of Communication. University of Illinois Press, Urbana. |
18 | State Environmental Protection (国家环境保护总局) (2002) Water and Wastewater Monitoring Analysis Method (4th Edition) (水和废水监测分析方法, 第4版). China Environmental Science Press, Beijing. (in Chinese) |
19 | Tavernini S, Mura G, Rossetti G (2005) Factors influencing the seasonal phenology and composition of zooplankton communities in mountain temporary pools.International Review of Hydrobiology, 90, 358-375. |
20 | Wang C (王超), Li XH (李新辉), Lai ZN (赖子尼), Tan XC (谭细畅), Li J (李捷), Li YF (李跃飞) (2010) Preliminary study on phytoplankton community structure of Lianjiang.Guangdong Agricultural Sciences(广东农业科学), 37(3), 168-172. (in Chinese with English abstract) |
21 | Wu JX (吴建新), Yan BL (阎斌伦), Feng ZH (冯志华), Li Y (李玉), Xu JT (徐加涛), Li SH (李士虎), Shen X (申欣) (2011) Zooplankton ecology near the Tianwan Nuclear Power Station.Acta Ecologica Sinica(生态学报), 31, 6902-6911. (in Chinese with English abstract) |
22 | Wu L (吴利), Feng WS (冯伟松), Zhang TL (张堂林), Yu YH (余育和) (2011) Characteristics of zooplankton community and its relation to environmental factors in Lake Wuhu in spring and autumn.Journal of Hydroecology(水生态学杂志), 32(2), 31-37. (in Chinese with English abstract) |
23 | Xie JJ (谢进金), Xu YQ (许友勤), Chen YS (陈寅山), Dai CJ (戴聪杰), Chen ZY (陈朝阳) (2005) The relationship of community structure of zooplankton and the water pollution of the Jinjiang River Valley.Chinese Journal of Zoology(动物学杂志), 40(5), 8-13. (in Chinese with English abstract) |
24 | Xu ZL (徐兆礼), Wang YL (王云龙), Chen YQ (陈亚瞿), Shen HT (沈焕庭) (1995) An ecological study on zooplankton in maximum turbid zone of estuarine area of Changjiang (Yangtze) River.Journal of Fishery Sciences of China(中国水产科学), 2(1), 39-48. (in Chinese with English abstract) |
25 | Zeng Y (曾阳), Fu XE (付秀娥), Miao MS (苗明升), Fu RS (付荣恕), Chen LL (陈琳琳), Ren ZM (任宗明), Wang YW (王亚炜), Wei YS (魏源送) (2012) Water quality assessment of Wenyuhe River based on the cross-correlation analysis on the diversity of macro-zooplankton and water parameters.Asian Journal of Ecotoxicology(生态毒理学报), 2(7), 162-170. (in Chinese with English abstract) |
26 | Zhang ZS (章宗涉), Huang XF (黄祥飞) (1995) Studying Methods on Freshwater Plankton (淡水浮游生物研究方法). Science Press, Beijing. (in Chinese) |
27 | Zou M (邹鸣) (2005) The hydrological characteristics of Lianjiang River Basin.Guangdong Water Resources and Hydropower(广东水利水电), (6), 74-75. (in Chinese) |
[1] | 舒为杰, 何花, 曾罗, 谷志容, 谭敦炎, 杨晓琛. 雌雄异株物种一把伞南星雌雄株空间分布及性别二态性[J]. 生物多样性, 2024, 32(6): 24084-. |
[2] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[3] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[4] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[5] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[6] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[7] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[8] | 刘彩莲, 许庆, 王林龙, 邢衍阔, 宋稼豪, 林柏岸, 康斌, 刘敏. 闽东近海春秋季游泳动物多样性、密度及群落特征[J]. 生物多样性, 2023, 31(7): 22635-. |
[9] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
[10] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[11] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[12] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[13] | 张鹤露, 赵美红, 孙世春, 刘晓收. 西藏那曲市高原盐湖自由生活线虫群落多样性与结构特征[J]. 生物多样性, 2023, 31(5): 22533-. |
[14] | 魏庐潞, 徐婷婷, 李媛媛, 艾喆, 马飞. 同质园环境和遗传分化影响锦鸡儿属植物根际土壤固氮菌多样性和群落结构[J]. 生物多样性, 2023, 31(4): 22477-. |
[15] | 周欣扬, 王誉陶, 李建平. 黄土高原典型草原植物群落组成对降水变化的响应[J]. 生物多样性, 2023, 31(3): 22118-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn