生物多样性 ›› 2010, Vol. 18 ›› Issue (2): 137-144.  DOI: 10.3724/SP.J.1003.2010.142

• 论文 • 上一篇    下一篇

棉花耐盐相关种质资源遗传多样性分析

张丽娜, 叶武威*(), 王俊娟, 樊保香, 王德龙   

  1. 中国农业科学院棉花研究所, 农业部棉花遗传改良重点实验室, 河南安阳 455000
  • 收稿日期:2009-11-02 接受日期:2010-01-25 出版日期:2010-03-20 发布日期:2010-03-20
  • 通讯作者: 叶武威
  • 基金资助:
    “十一五”国家科技支撑计划(2006BAD13B04-1)

Genetic diversity analysis of salinity related germplasm in cotton

Lina Zhang, Wuwei Ye*(), Junjuan Wang, Baoxiang Fan, Delong Wang   

  1. Cotton Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan 455000
  • Received:2009-11-02 Accepted:2010-01-25 Online:2010-03-20 Published:2010-03-20
  • Contact: Wuwei Ye

摘要:

为了解我国棉花耐盐相关种质资源的遗传变异, 利用88对SSR引物对23份棉花耐盐材料和24份盐敏感材料进行遗传多样性分析。88个SSR位点在47份材料中共检测出338个等位基因变异, 平均每个位点有3.841个; 其中耐盐材料中检测出333个, 盐敏感材料中检测出312个。耐盐材料的位点多态信息含量(PIC)、每个位点的有效等位基因数(Ne)、基因型多样性(H′)分别为0.613、2.929和1.083, 盐敏感材料的PICNeH′分别为0.605、2.883和1.071。耐盐材料和盐敏感材料的Jaccard相似性系数分别在0.530-0.979和0.525-0.878之间, 遗传相似性系数总体平均值接近, 但耐盐材料的变化幅度更大。用类平均法(UPGMA)聚类将47份材料分成3个类群。总体而言, 大多数材料之间的遗传相似性系数较高, 表明我国陆地棉耐盐相关种质资源遗传基础狭窄。本结果为棉花耐盐育种中亲本的选配和优势组合的预测以及耐盐资源的合理利用等提供了基础资料。

关键词: 陆地棉, 耐盐性, SSR, 遗传相似性, 耐盐育种

Abstract

In order to study the genetic variation of salinity related cotton germplasm, 47 upland cotton accessions including 23 salinity tolerant materials and 24 salinity sensitive materials were explored using 88 simple sequence repeat (SSR) markers. We detected a total of 338 alleles at 88 SSR loci with an average of 3.841 alleles per locus, 333 of these alleles were detected in salinity tolerant germplasm and 312 alleles in salinity sensitive germplasm. Mean polymorphism information content (PIC), the average effective numbers of alleles (Ne) and the average genotype diversity index (H′) were 0.613, 2.929 and 1.083 in salinity tolerant germplasm, and 0.605, 2.883 and 1.071 in salinity sensitive germplasm, respectively. The similarity coefficients were similar between salinity tolerant germplasm and salinity sensitive germplasm. They varied from 0.530 to 0.979 in salinity tolerant germplasm, with a wider range than in salinity tolerant germplasm (from 0.525 to 0.878). The varieties were clustered into one major group and two small groups. The high genetic similarity coefficients we observed in Chinese salinity tolerant germplasm indicated narrow pedigrees within the group. Our results are useful for assessing cotton pedigrees, improving cotton hybrids, and ultimately allowing for the improved utilization of salinity tolerant germplasm.

Key words: upland cotton, salinity tolerance, SSR, genetic similarity, breeding for salinity tolerance