生物多样性 ›› 2011, Vol. 19 ›› Issue (5): 535-542. DOI: 10.3724/SP.J.1003.2011.08109
马洪峥1,2, 李珊珊2, 葛颂2, 戴思兰1,*(), 陈文俐2,*()
收稿日期:
2011-07-11
接受日期:
2011-08-24
出版日期:
2011-09-20
发布日期:
2011-10-08
通讯作者:
戴思兰,陈文俐
基金资助:
Hongzheng Ma1,2, Shanshan Li2, Song Ge2, Silan Dai1,*(), Wenli Chen2,*()
Received:
2011-07-11
Accepted:
2011-08-24
Online:
2011-09-20
Published:
2011-10-08
Contact:
Silan Dai, Wenli Chen
摘要:
禾本科芒属植物具有在边际性土地(marginal land)上驯化成为高产能源作物的巨大潜力, 其中尼泊尔芒(Miscanthus nepalensis)和双药芒(M. nudipes)两个双药芒组物种分布于喜马拉雅-横断山地区, 是具有耐寒及抗旱特性的优良种质资源。为了了解其遗传多样性和群体遗传结构,需要筛选出有效的分子标记。目前在适用于核心芒属植物群体遗传学分析的42对SSR引物中, 有23对来自于核心芒属物种,19对来自玉米。我们利用来自双药芒组2个种的6个代表性个体, 筛选得到14对可在双药芒组中稳定扩增的引物, 其中有12对来自核心芒属,显示同属引物的扩增效率为52.2%(12/23)。成功扩增的14个位点中11个为多态。利用所得引物对双药芒组4个自然居群进行群体遗传学初步分析发现, 所获得的SSR引物多态性高、表现稳定, 适于双药芒组物种的群体遗传多样性分析, 可为芒属植物资源的研究和利用提供重要的分子标记。
马洪峥, 李珊珊, 葛颂, 戴思兰, 陈文俐 (2011) 能源作物芒属双药芒组SSR引物的筛选及其评价. 生物多样性, 19, 535-542. DOI: 10.3724/SP.J.1003.2011.08109.
Hongzheng Ma, Shanshan Li, Song Ge, Silan Dai, Wenli Chen (2011) Isolation of SSR markers for two related second-generation energy crop species, Miscanthus nepalensis and M. nudipes (Poaceae). Biodiversity Science, 19, 535-542. DOI: 10.3724/SP.J.1003.2011.08109.
样品代号 Sample code | 地理位置 Locality | 样品数 Sample size | 海拔 Altitude (m) | 经度 Longitude (E) | 纬度 Latitude (N) |
---|---|---|---|---|---|
引物筛选 Primer selection | |||||
双药芒 M. nudipes | |||||
Nu06-18 | 中国西藏 Tibet, China | 1 | 2,887 | 88º57′00.16″ | 27º24′37.20″ |
Nu08-08 | 中国云南 Yunnan, China | 1 | 2,751 | 100º15′40.61″ | 27º01′43.77″ |
Nu18-20 | 中国四川 Sichuan, China | 1 | 2,466 | 102º55′43.46″ | 32º07′18.89″ |
尼泊尔芒 M. nepalensis | |||||
GS01-20 | 印度北安恰尔邦 Uttaranchal, India | 1 | 2,200 | 79º27′14.58″ | 29º23′34.70″ |
Ne11-09 | 中国云南 Yunnan, China | 1 | 2,270 | 100º07′40.00″ | 25º42′23.08″ |
Ne20-05 | 中国四川 Sichuan, China | 1 | 878 | 102º46′44.96″ | 30º19′09.16″ |
适用性检测 Applicability test | |||||
双药芒 M. nudipes | |||||
Nu11 | 中国四川 Sichuan, China | 20 | 2,235 | 102º23′29.66″ | 27º52′43.25″ |
Nu06 | 中国西藏 Tibet, China | 20 | 2,887 | 88º57′00.16″ | 27º24′37.20″ |
尼泊尔芒 M. nepalensis | |||||
Ne09 | 中国云南 Yunnan, China | 20 | 2,759 | 98º42′01.42″ | 25º58′40.00″ |
Ne18 | 中国四川 Sichuan, China | 20 | 2,047 | 102º02′32.08″ | 28º25′26.24″ |
表1 采样位置及生境
Table 1 Sampling localities and habitats of Miscanthus nudipesandM. nepalensis
样品代号 Sample code | 地理位置 Locality | 样品数 Sample size | 海拔 Altitude (m) | 经度 Longitude (E) | 纬度 Latitude (N) |
---|---|---|---|---|---|
引物筛选 Primer selection | |||||
双药芒 M. nudipes | |||||
Nu06-18 | 中国西藏 Tibet, China | 1 | 2,887 | 88º57′00.16″ | 27º24′37.20″ |
Nu08-08 | 中国云南 Yunnan, China | 1 | 2,751 | 100º15′40.61″ | 27º01′43.77″ |
Nu18-20 | 中国四川 Sichuan, China | 1 | 2,466 | 102º55′43.46″ | 32º07′18.89″ |
尼泊尔芒 M. nepalensis | |||||
GS01-20 | 印度北安恰尔邦 Uttaranchal, India | 1 | 2,200 | 79º27′14.58″ | 29º23′34.70″ |
Ne11-09 | 中国云南 Yunnan, China | 1 | 2,270 | 100º07′40.00″ | 25º42′23.08″ |
Ne20-05 | 中国四川 Sichuan, China | 1 | 878 | 102º46′44.96″ | 30º19′09.16″ |
适用性检测 Applicability test | |||||
双药芒 M. nudipes | |||||
Nu11 | 中国四川 Sichuan, China | 20 | 2,235 | 102º23′29.66″ | 27º52′43.25″ |
Nu06 | 中国西藏 Tibet, China | 20 | 2,887 | 88º57′00.16″ | 27º24′37.20″ |
尼泊尔芒 M. nepalensis | |||||
Ne09 | 中国云南 Yunnan, China | 20 | 2,759 | 98º42′01.42″ | 25º58′40.00″ |
Ne18 | 中国四川 Sichuan, China | 20 | 2,047 | 102º02′32.08″ | 28º25′26.24″ |
位点名称 Locus | 引物序列 Primer sequences (5′-3′) | 参考重复式样 Reference motif | 参考片段长度 Reference length | 退火温度 Annealing temperature (℃) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bgln176 | F: AGTTCACGTCCAGCTGAATGACAG R: CGCGCATCGCATGCTTATCCTA | - | 140 | 54 | ||||||||||
Bgln434 | F: GTGCAAAGGGGAGAGAGG R: TCGCCGTTCTTCGCCTTAG | - | 85 | 54 | ||||||||||
DSSR09 | F: CGCACCACTCCCTGACAAT R: GCCAGTAACATCCCCAACG | (AC)17 | 294 | 58 | ||||||||||
DSSR24 | F: AAGGGCGAGGCAAAGCAAG R: AGATTTCGTGACAAAGGGAGC | (GAT)7(GA)2 | 100 | 58 | ||||||||||
DSSR32 | F: GATTAGACTGTTTGGTAGGGATTC R: CTGGTTTTGCGAGATTTCAT | (GA)24 | 305 | 54 | ||||||||||
MSSR10 | F: CCTGGGATTCTTTGATTTGAG R: GGATTTGGCTTTCGCTGTC | (AG)19 | 159 | 54 | ||||||||||
MSSR14 | F: AACTAAAGGCGAAAGCTAGGAGG R: CAGATGCTGGCTGTTGGTGATGT | (AC)18A9 | 155 | 58 | ||||||||||
MSSR21 | F: TATGGGTGAATGTTGGTTT R: GCCCGTTTGTGCGAGTGC | (AC)8A8 | 187 | 58 | ||||||||||
MSSR36 | F: TAAGCCCAAACAAAGGAAAT R: CAAATGGCAATAGTGAGCAA | (AG)13 | 228 | 54 | ||||||||||
MSSR37 | F: CAGATGCCATTACTGTAGCGA R: TACCACAACGAAACCAAAAC | (AC)5(AG)2(AC)11 | 243 | 54 | ||||||||||
MSSR38 | F: GAGTGAGCAGTGGCAACG R: ATCTGGCTGGACAACCTTTT | (GAT)7 | 250 | 54 | ||||||||||
MSSR42 | F: TGCCACGCCTTCTTCACCTATC R: GCATCCAGCCATCCACCCTC | (TG)8 (AG)14 | 179 | 58 | ||||||||||
M&M02 | F: AAGACGGTGGTAAGCCACTT R: AGACAACACCAAAGTATTATC | (CAC)9 | 110 | 54 | ||||||||||
M&M39 | F: AGAAATGAAAGTGCAGTGAC R: AAGGAGTGCTTCTCCCTCTC | (AGGC)6 (CGCA)3 | 180 | 54 |
表2 筛选获得的14对SSR引物信息、参考序列重复式样、参考片段长度和PCR扩增退火温度
Table 2 Characteristics of 14 identified microsatellite primers, reference motif, reference length and annealing temperature in PCR amplification
位点名称 Locus | 引物序列 Primer sequences (5′-3′) | 参考重复式样 Reference motif | 参考片段长度 Reference length | 退火温度 Annealing temperature (℃) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bgln176 | F: AGTTCACGTCCAGCTGAATGACAG R: CGCGCATCGCATGCTTATCCTA | - | 140 | 54 | ||||||||||
Bgln434 | F: GTGCAAAGGGGAGAGAGG R: TCGCCGTTCTTCGCCTTAG | - | 85 | 54 | ||||||||||
DSSR09 | F: CGCACCACTCCCTGACAAT R: GCCAGTAACATCCCCAACG | (AC)17 | 294 | 58 | ||||||||||
DSSR24 | F: AAGGGCGAGGCAAAGCAAG R: AGATTTCGTGACAAAGGGAGC | (GAT)7(GA)2 | 100 | 58 | ||||||||||
DSSR32 | F: GATTAGACTGTTTGGTAGGGATTC R: CTGGTTTTGCGAGATTTCAT | (GA)24 | 305 | 54 | ||||||||||
MSSR10 | F: CCTGGGATTCTTTGATTTGAG R: GGATTTGGCTTTCGCTGTC | (AG)19 | 159 | 54 | ||||||||||
MSSR14 | F: AACTAAAGGCGAAAGCTAGGAGG R: CAGATGCTGGCTGTTGGTGATGT | (AC)18A9 | 155 | 58 | ||||||||||
MSSR21 | F: TATGGGTGAATGTTGGTTT R: GCCCGTTTGTGCGAGTGC | (AC)8A8 | 187 | 58 | ||||||||||
MSSR36 | F: TAAGCCCAAACAAAGGAAAT R: CAAATGGCAATAGTGAGCAA | (AG)13 | 228 | 54 | ||||||||||
MSSR37 | F: CAGATGCCATTACTGTAGCGA R: TACCACAACGAAACCAAAAC | (AC)5(AG)2(AC)11 | 243 | 54 | ||||||||||
MSSR38 | F: GAGTGAGCAGTGGCAACG R: ATCTGGCTGGACAACCTTTT | (GAT)7 | 250 | 54 | ||||||||||
MSSR42 | F: TGCCACGCCTTCTTCACCTATC R: GCATCCAGCCATCCACCCTC | (TG)8 (AG)14 | 179 | 58 | ||||||||||
M&M02 | F: AAGACGGTGGTAAGCCACTT R: AGACAACACCAAAGTATTATC | (CAC)9 | 110 | 54 | ||||||||||
M&M39 | F: AGAAATGAAAGTGCAGTGAC R: AAGGAGTGCTTCTCCCTCTC | (AGGC)6 (CGCA)3 | 180 | 54 |
位点名称 Locus | 重复式样 Repeat motif | 等位基因数 N | 长度变异范围 Sequence range (bp) | 多态信息含量 PIC | 期望杂合度 HE | 观察杂合度 Ho |
---|---|---|---|---|---|---|
Bgln176 | (CTAG)3(CT)6(CGGC)4 | 4 | 146-158 | 0.6260 | 0.5189 | 1.0000 |
Bgln434 | (CT)5C4(CT)3 | 1 | 84 | 0.0000 | 0.0000 | 0.0000 |
DSSR09 | (AC)7 | 1 | 272 | 0.0000 | 0.0000 | 0.0000 |
DSSR24 | (GAT)7(GA)2 | 1 | 94 | 0.0000 | 0.0000 | 0.0000 |
DSSR32 | (GA)10 | 21 | 296-345 | 0.5198 | 0.3843 | 0.2625 |
MSSR10 | (GA)2GC(GA)4T(GA)2 | 6 | 117-127 | 0.5970 | 0.4808 | 0.8500 |
MSSR14 | (AC)4A11 | 7 | 118-124 | 0.7189 | 0.4859 | 0.2375 |
MSSR21 | T7(CA)6(CA)6(AC)4 | 10 | 167-208 | 0.7556 | 0.6055 | 0.9375 |
MSSR36 | (AG)9 | 8 | 218-226 | 0.6904 | 0.7210 | 0.3000 |
MSSR37 | (CA)4GAA(CA)5 | 11 | 240-261 | 0.6691 | 0.3529 | 0.1625 |
MSSR38 | (GAT)4 | 2 | 236-239 | 0.3047 | 0.2564 | 0.5000 |
MSSR42 | (AG)10 | 8 | 177-194 | 0.6329 | 0.5881 | 0.8625 |
M&M02 | (CAC)5 | 5 | 90-106 | 0.6622 | 0.7096 | 0.3750 |
M&M39 | (GAA)3(CGCA)2 | 2 | 141-154 | 0.3158 | 0.3984 | 0.5375 |
平均值 Average | - | 6 | - | 0.4637 | 0.3930 | 0.4304 |
表3 筛选获得14个SSR位点在双药芒组中的序列重复式样、等位基因数、序列长度变异范围、多态信息含量、期望杂合度和观察杂合度
Table 3 Repeat motif, the number of alleles, sequence range, polymorphism information content, expected and observed heterozygosity of 14 identified microsatellite loci in Miscanthus nepalensis and M. nudipes
位点名称 Locus | 重复式样 Repeat motif | 等位基因数 N | 长度变异范围 Sequence range (bp) | 多态信息含量 PIC | 期望杂合度 HE | 观察杂合度 Ho |
---|---|---|---|---|---|---|
Bgln176 | (CTAG)3(CT)6(CGGC)4 | 4 | 146-158 | 0.6260 | 0.5189 | 1.0000 |
Bgln434 | (CT)5C4(CT)3 | 1 | 84 | 0.0000 | 0.0000 | 0.0000 |
DSSR09 | (AC)7 | 1 | 272 | 0.0000 | 0.0000 | 0.0000 |
DSSR24 | (GAT)7(GA)2 | 1 | 94 | 0.0000 | 0.0000 | 0.0000 |
DSSR32 | (GA)10 | 21 | 296-345 | 0.5198 | 0.3843 | 0.2625 |
MSSR10 | (GA)2GC(GA)4T(GA)2 | 6 | 117-127 | 0.5970 | 0.4808 | 0.8500 |
MSSR14 | (AC)4A11 | 7 | 118-124 | 0.7189 | 0.4859 | 0.2375 |
MSSR21 | T7(CA)6(CA)6(AC)4 | 10 | 167-208 | 0.7556 | 0.6055 | 0.9375 |
MSSR36 | (AG)9 | 8 | 218-226 | 0.6904 | 0.7210 | 0.3000 |
MSSR37 | (CA)4GAA(CA)5 | 11 | 240-261 | 0.6691 | 0.3529 | 0.1625 |
MSSR38 | (GAT)4 | 2 | 236-239 | 0.3047 | 0.2564 | 0.5000 |
MSSR42 | (AG)10 | 8 | 177-194 | 0.6329 | 0.5881 | 0.8625 |
M&M02 | (CAC)5 | 5 | 90-106 | 0.6622 | 0.7096 | 0.3750 |
M&M39 | (GAA)3(CGCA)2 | 2 | 141-154 | 0.3158 | 0.3984 | 0.5375 |
平均值 Average | - | 6 | - | 0.4637 | 0.3930 | 0.4304 |
图1 尼泊尔芒(A)和双药芒(B)3个SSR位点的ABI电泳峰值图
Fig. 1 Sequence trace file of three microsatellite loci of Miscanthus nepalensis and M. nudipes from ABI electrophoresis
居群 Population | 等位基因总数 Na | 近交系数 FIS | 居群分化指数 FST | 个体分化指数 FIT |
---|---|---|---|---|
M. nepalensis(Ne09) | 22 | -0.0412 | 0.3854 | - |
M. nepalensis(Ne18) | 28 | -0.2940 | 0.4793 | - |
M. nudipes(Nu06) | 42 | -0.1798 | 0.1775 | - |
M. nudipes(Nu11) | 70 | 0.0358 | 0.0464 | - |
平均值 Average | 40.5 | -0.1198 | 0.2722 | 0.2447 |
表4 各居群遗传分化指数
Table 4 Genetic structure indices of Miscenthus populations
居群 Population | 等位基因总数 Na | 近交系数 FIS | 居群分化指数 FST | 个体分化指数 FIT |
---|---|---|---|---|
M. nepalensis(Ne09) | 22 | -0.0412 | 0.3854 | - |
M. nepalensis(Ne18) | 28 | -0.2940 | 0.4793 | - |
M. nudipes(Nu06) | 42 | -0.1798 | 0.1775 | - |
M. nudipes(Nu11) | 70 | 0.0358 | 0.0464 | - |
平均值 Average | 40.5 | -0.1198 | 0.2722 | 0.2447 |
[1] | Ahmand R, Okada M, Firestone JL, Mallek CR, Jasieniuk M (2006) Isolation, characterization, and evaluation of microsatellite loci for cultivar identification in the ornamental pampas grass Cortaderia selloana. Journal of the American Society for Horticulture Science, 131,499-505. |
[2] | Chen SL, Renvoize SA (2006) Miscanthus Andersson. In: Flora of China (eds Wu CY, Raven PH), Vol. 22, pp. 581-583. In: Science Press, Beijing, Missouri Botanical Garden Press, St. Louis |
[3] | Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance . New Phytologist, 148,287-294. |
[4] | Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB (2002) Comparative responses to water stress in stay-green, rapid and slow senescing genotypes of the biomass crop, Miscanthus. New Phytologist, 154,335-345. |
[5] | Clifton-Brown JC, Chiang YC, Hodkinson TR (2008) Genetic Improvement of Bioenergy Crops (ed. Vermerris W), pp.273-294. Springer, New York. |
[6] | Cristofani-Yaly M, Novelli VM, Bastianel M, Machado MA (2011) Transferability and level of heterozygosity of microsatellite markers in Citrus species . Plant Molecular Biology Reporter, 29,418-423. |
[7] |
Excoffier L, Laval LG, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1,47-50.
URL PMID |
[8] | Hernández P, Dorado G, Laurie DA, Martín A, Snape JW (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theoretical and Applied Genetics, 102,616-622. |
[9] |
Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum, and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers, Journal of Plant Research, 115,381-392.
DOI URL PMID |
[10] | Hung KH, Chiang TY, Chiu CT, Hsu TW, Ho CW (2009) Isolation and characterization of microsatellite loci from a potential biofuel plant Miscanthus sinensis (Poaceae) . Conservation Genetics, 10,1377-1380. |
[11] | Jørgensen U, Schwarz KU (2000) Why do basic research? A lesson from commercial exploitation of Miscanthus. New Phytologist, 148,190-193. |
[12] | Keng YL (耿以礼) (1959) Analysis of the small mammals community diversity in the Qiandao Lake region. Flora Illustralis Plantarum Primarum Sinicarum Gramineae (中国主要植物图说: 禾本科), pp. 1178. Science Press: Beijing (in Chinese) |
[13] | Liu L (刘亮) (1997) Miscanthus, Diandranthus, Triarrhena. In: Flora Reipublicae Popularis Sinicae (中国植物志), Tomus. 10 (ed. Chen SL(陈守良)), pp.4-27. Science Press, Beijing. (in Chinese) |
[14] | Liu YC (刘艳春) (2010) The Taxonomic Revision of Saccharinae (Poaceae) in China . (中国甘蔗亚族(禾本科)的分类修订). PhD dissertation, Kunming Institute of Botany, Chinese Academy of Sciences. (in Chinese with English summary) |
[15] |
Lu GQ, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Birefings in Bioinformatics, 5,378-388.
DOI URL PMID |
[16] | Nayak S, Rout GR (2005) Isolation and characterization of microsatellites in Bambusa arundinacea and cross species amplification in other bamboos . Plant Breeding, 124,599-602. |
[17] | Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA, 70,3321-3323. |
[18] |
Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution, 49,1280-1283.
DOI URL PMID |
[19] |
Saha MC, Cooper JD, Mian RMA, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theoretical and Applied Genetics, 113,1449-1458.
DOI URL PMID |
[20] |
Sang T (2011) Toward the domestication of lignocellulosic energy crops: learning from food crop domestication. Journal of Integrative Plant Biology, 53,96-104.
DOI URL PMID |
[21] | Sang T, Zhu WX (2011) China’s bioenergy potential. Global Change Biology Bioenergy, 3,79-90. |
[22] |
Sharma RK, Gupta P, Sharma V, Sood A, Mohapatra T, Ahuja PS (2008) Evaluation of rise and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome, 51,91-103.
DOI URL PMID |
[23] |
Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139,457-462.
URL PMID |
[24] |
Yan J, Chen WL, Luo F, Ma HZ, Meng AP, Li XW, Zhu M, Li SS, Zhou HF, Zhu WX, Han B, Ge S, Li JQ, Sang T (2011) Variability and adaptability of Miscanthus species evaluated for energy crop domestication . Global Change Biology Bioenergy, doi: 10.1111/j.1757-1707.2011.01108.x.
URL PMID |
[25] | Zou YP (邹喻苹), Ge S (葛颂), Wang XD (王晓东) (2001) The Molecular Markers Among Systematic and Evolutionary Botany (系统与进化植物学中的分子标记). Science Press, Beijing. (in Chinese) |
[26] | Zhou HF, Li SS, Ge S (2011) Development of microsatellite markers for Miscanthus sinensis (Poaceae) and cross-amplification in other related species . American Journal of Botany, 98,e195-e197. |
[1] | 蔡新宇, 毛晓伟, 赵毅强. 家养动物驯化起源的研究方法与进展[J]. 生物多样性, 2022, 30(4): 21457-. |
[2] | 莫日根高娃, 商辉, 刘保东, 康明, 严岳鸿. 一个种还是多个种? 简化基因组及其形态学证据揭示中国白桫椤植物的物种多样性分化[J]. 生物多样性, 2019, 27(11): 1196-1204. |
[3] | 戴李川, 张明龙, 刘继业, 李小白, 崔海瑞. 用EST-SSR标记检测我国甘蓝型油菜品种的遗传多样性[J]. 生物多样性, 2009, 17(5): 482-489. |
[4] | 肖龙骞, 朱华. 苏铁nrDNA ITS区的序列多态性:不完全致同进化的证据[J]. 生物多样性, 2009, 17(5): 476-481. |
[5] | 潘兆娥, 孙君灵, 王西文, 贾银华, 周忠丽, 庞保印, 杜雄明. 基于棉花参比种质的SSR多态性核心引物筛选[J]. 生物多样性, 2008, 16(6): 555-561. |
[6] | 董志军, 黄晖, 黄良民, 李元超, 李秀保. 运用PCR-RFLP方法研究三亚鹿回头岸礁造礁石珊瑚共生藻的组成[J]. 生物多样性, 2008, 16(5): 498-502. |
[7] | 饶友生, 张细权. 拷贝数目变异: 基因组遗传变异的新诠释[J]. 生物多样性, 2008, 16(4): 399-406. |
[8] | 张田, 李作洲, 刘亚令, 姜正旺, 黄宏文. 猕猴桃属植物的cpSSR遗传多样性及其同域分布物种的杂交渐渗与同塑[J]. 生物多样性, 2007, 15(1): 1-22. |
[9] | 黄勃, 王成树, 王滨, 樊美珍, 李增智. 粉拟青霉种内nrDNA ITS分析[J]. 生物多样性, 2003, 11(6): 480-485. |
[10] | 邹喻苹, 葛颂. 新一代分子标记——SNPs及其应用[J]. 生物多样性, 2003, 11(5): 370-382. |
[11] | 赵桂仿, Francois Felber, Philippe Kuepfer. 阿尔卑斯山黄花茅(Anthoxanthum alpinum)沿海拔梯度的基因频率分布[J]. 生物多样性, 2000, 08(1): 95-102. |
[12] | 虞泓, 郑树松, 黄瑞复. 云南松居群内雄球花多态性[J]. 生物多样性, 1998, 06(4): 267-271. |
[13] | 冯书堂, 陈幼春. 五指山猪生物学特性、易地繁育及遗传多样性研究[J]. 生物多样性, 1998, 06(3): 172-179. |
[14] | 吴平, 周开亚, 王亚明, 黄恭情, 徐麟木. 用RFLP和PCR-RFLP技术研究东北虎和华南虎线粒体DNA多态性*[J]. 生物多样性, 1997, 05(3): 173-178. |
[15] | 于长青. 中国麋鹿遗传多样性现状与保护对策[J]. 生物多样性, 1996, 04(3): 130-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn