生物多样性 ›› 2009, Vol. 17 ›› Issue (4): 362-377. DOI: 10.3724/SP.J.1003.2009.09132
所属专题: 保护生物学: 现状和挑战
收稿日期:
2009-05-31
接受日期:
2009-07-07
出版日期:
2009-07-20
发布日期:
2009-07-20
通讯作者:
卢宝荣
作者简介:
*E-mail: brlu@fudan.edu.cn基金资助:
Bao-Rong Lu*(), Hui Xia, Xiao Yang, Xin Jin, Ping Liu, Wei Wang
Received:
2009-05-31
Accepted:
2009-07-07
Online:
2009-07-20
Published:
2009-07-20
Contact:
Bao-Rong Lu
摘要:
转基因作物的商品化生产和大规模环境释放, 引起了全球对生物安全问题的广泛关注和争议, 其中转基因通过花粉介导的基因漂移逃逸到非转基因作物及其野生近缘种, 进而带来不同类型的环境风险就是备受争议的生物安全问题之一。有效的生物安全评价和研究能够为转基因作物的安全持久利用保驾护航。按照风险评价的原则, 对于转基因逃逸及其潜在环境风险的评价应包括两个重要步骤: (1)检测转基因向野生近缘种(包括杂草类型)群体逃逸的频率; (2)确定逃逸后的转基因能否通过遗传渐渗在野生近缘种群体中存留和扩散。杂交–渐渗是进化生物学中非常重要的科学命题和普遍的自然现象, 杂交–渐渗的进化理论与转基因逃逸及其潜在环境风险的研究和评价有密切的关系。杂交–渐渗过程往往导致物种形成、适应性进化和自然群体的濒危与灭绝, 这是因为在杂交–渐渗过程中, 不同的机制如遗传同化作用、群体湮没效应以及群体的选择性剔除效应等都会在很大程度上影响群体的进化过程。转基因通过杂交–渐渗进入野生群体, 使这一过程更加复杂化。如果转基因能提高群体的适合度, 则更有利于其渐渗速率, 从而在群体中迅速扩散并带来一定的生态后果。杂交–渐渗的进化理论和思想将有益于指导转基因逃逸及其潜在环境风险的研究和评价。
卢宝荣, 夏辉, 杨箫, 金鑫, 刘苹, 汪魏 (2009) 杂交–渐渗进化理论在转基因逃逸及其环境风险评价和研究中的意义. 生物多样性, 17, 362-377. DOI: 10.3724/SP.J.1003.2009.09132.
Bao-Rong Lu, Hui Xia, Xiao Yang, Xin Jin, Ping Liu, Wei Wang (2009) . Biodiversity Science, 17, 362-377. DOI: 10.3724/SP.J.1003.2009.09132.
图1 作物品种之间、作物与其野生近缘种和杂草类型之间的双向基因漂移示意图。箭头线的粗细表明花粉介导基因漂移的难易程度。
Fig. 1 Schematic illustration showing the two-directional gene flow among cultivated plant species, weedy types, and wild relatives. The thickness of arrows indicates the possibility of pollen-mediated gene flow.
作物 Crop | 逃逸对象 Recipient | 实验方法 Method | 转基因 Transgene | 鉴定方法 Method of identification | 转基因逃逸频率* Frequency of transgene escape | 参考文献 References |
---|---|---|---|---|---|---|
转基因油菜 GM oil seed rape (Brassica napus) | 白菜型油菜 B. rapa | 田间调查 Field survey | EPSPS | 除草剂筛选 Herbicide selection | 1.1-17.5% | Simard et al., |
转基因油菜 GM oil seed rape (Brassica napus) | 白菜型油菜 B. rapa | 田间实验与调查 Field survey and designed experiment | EPSPS、 GFP | 除草剂筛选、荧光检测、AFLP分子标记 Herbicide selection, GFP protein detection and AFLP markers | 7.0-13.6% | Warwick et al., |
转基因油菜 GM oil seed rape (Brassica napus) | 非转基因油菜 Non-GM B. napus | 田间实验 Designed experiment | EPSPS | 除草剂筛选 Herbicide selection | 0.16% (~1 m) 0.05% (~5 m) | Du et al., |
匍匐翦股颖 GM creeping bentgrass (Agrostis gigantea) | 匍匐翦股颖的自生株 Creeping bentgrass volunteer | 田间调查 Field survey | EPSPS | 除草剂筛选 Herbicide selection | 34.0-93.0% | Zapiola et al., |
转基因棉花 GM cotton (Gossypium hirsutum) | 非转基因棉花 Non-GM cotton | 田间实验 Designed experiment | Bt | Bt基因特异性PCR Bt gene specific PCR | 19.57% (~1 m) | Wang et al., |
转基因莴苣 GM lettuce (Lactuca sativa) | 非转基因莴苣 Non-GM lettuce | 田间实验 Designed experiment | KNAT、NPTII | 卡那徽素筛选结合转基因特异性PCR Kanamycin selection and NPTII gene specific PCR | 0.49% (~0.5 m) 0.071% (~11 m) 0.035% (22 m) | Giannino et al., |
转基因栽培稻 GM rice (Oryza sativa) | 杂草稻 O. sativa f. spontanea | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | < 0.1% | Chen et al., Messeguer et al., |
转基因栽培稻 GM rice (Oryza sativa) | 普通多年生野生稻 O. rufipogon | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | 11-18% (~1 m) 0.01% (~250 m) | Wang et al., |
转基因栽培稻 GM rice (Oryza sativa) | 非转基因栽培稻 Non-GM rice | 田间实验 Designed experiment | Bt、CpTI、hpt | 潮霉素筛选 Hygromycin selection | 0.05-0.79% (< 1 m) | Rong et al., |
转基因栽培稻 GM rice (Oryza sativa) | 非转基因的雄性不育系 Non-GM male sterile rice line | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | 3.145-36.12% | Jia et al., |
转基因栽培稻 GM rice (Oryza sativa) | 非转基因杂交稻 Non-GM hybrid rice | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | 0.037-0.045% | Jia et al., |
表1 不同实验或调查获得的转基因从转基因作物逃逸到非转基因作物以及野生近缘种的频率
Table 1 Transgene escape frequencies from GM crops to non-GM crops and their wild relatives in different studies
作物 Crop | 逃逸对象 Recipient | 实验方法 Method | 转基因 Transgene | 鉴定方法 Method of identification | 转基因逃逸频率* Frequency of transgene escape | 参考文献 References |
---|---|---|---|---|---|---|
转基因油菜 GM oil seed rape (Brassica napus) | 白菜型油菜 B. rapa | 田间调查 Field survey | EPSPS | 除草剂筛选 Herbicide selection | 1.1-17.5% | Simard et al., |
转基因油菜 GM oil seed rape (Brassica napus) | 白菜型油菜 B. rapa | 田间实验与调查 Field survey and designed experiment | EPSPS、 GFP | 除草剂筛选、荧光检测、AFLP分子标记 Herbicide selection, GFP protein detection and AFLP markers | 7.0-13.6% | Warwick et al., |
转基因油菜 GM oil seed rape (Brassica napus) | 非转基因油菜 Non-GM B. napus | 田间实验 Designed experiment | EPSPS | 除草剂筛选 Herbicide selection | 0.16% (~1 m) 0.05% (~5 m) | Du et al., |
匍匐翦股颖 GM creeping bentgrass (Agrostis gigantea) | 匍匐翦股颖的自生株 Creeping bentgrass volunteer | 田间调查 Field survey | EPSPS | 除草剂筛选 Herbicide selection | 34.0-93.0% | Zapiola et al., |
转基因棉花 GM cotton (Gossypium hirsutum) | 非转基因棉花 Non-GM cotton | 田间实验 Designed experiment | Bt | Bt基因特异性PCR Bt gene specific PCR | 19.57% (~1 m) | Wang et al., |
转基因莴苣 GM lettuce (Lactuca sativa) | 非转基因莴苣 Non-GM lettuce | 田间实验 Designed experiment | KNAT、NPTII | 卡那徽素筛选结合转基因特异性PCR Kanamycin selection and NPTII gene specific PCR | 0.49% (~0.5 m) 0.071% (~11 m) 0.035% (22 m) | Giannino et al., |
转基因栽培稻 GM rice (Oryza sativa) | 杂草稻 O. sativa f. spontanea | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | < 0.1% | Chen et al., Messeguer et al., |
转基因栽培稻 GM rice (Oryza sativa) | 普通多年生野生稻 O. rufipogon | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | 11-18% (~1 m) 0.01% (~250 m) | Wang et al., |
转基因栽培稻 GM rice (Oryza sativa) | 非转基因栽培稻 Non-GM rice | 田间实验 Designed experiment | Bt、CpTI、hpt | 潮霉素筛选 Hygromycin selection | 0.05-0.79% (< 1 m) | Rong et al., |
转基因栽培稻 GM rice (Oryza sativa) | 非转基因的雄性不育系 Non-GM male sterile rice line | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | 3.145-36.12% | Jia et al., |
转基因栽培稻 GM rice (Oryza sativa) | 非转基因杂交稻 Non-GM hybrid rice | 田间实验 Designed experiment | Bar | 除草剂筛选 Herbicide selection | 0.037-0.045% | Jia et al., |
作物 Crop | 野生近缘种 Wild relative | 性状 Trait | 目标转基因 Transgene | 世代 Generation | 对适合度影响 Impact to fitness | 资料来源 References |
---|---|---|---|---|---|---|
向日葵 Helianthus annus | 野生向日葵 H. annus (wild type) | 抗虫 Insect resistance | Bt (cry1Ac) | BC1 | 提高 Increase | Snow et al., |
甘蓝型油菜 Brassica napus | 白菜型野油菜 B. rapa | 抗虫 Insect resistance | Bt (cry1Ac) | F1 hybrids | 提高 Increase | Vacher et al., |
甘蓝型油菜 Brassica napus | 白菜型野油菜 B. rapa | 抗虫 Insect resistance | Bt (cry1Ac) | F1, BC1F1, BC2F1, BC2F2 | 不显著 No significance | Halfhill et al., |
甘蓝型油菜 Brassica napus | 白菜型野油菜 B. rapa | 抗除草剂 Herbicide tolerance | Bar | BC3 | 不显著 No significance | Snow et al., |
玉米 Zea mays | 墨西哥杂草玉米 Z. mays ssp. mexicana | 抗除草剂 Herbicide tolerance | EPSPS | F1 hybrids | 不显著 No significance | Guadagnuolo et al., |
水稻 Oryza sativa | 一年生野生稻 O. nivara | 抗虫 Insect resistance | CpTI | F3, F4 | 不显著 No significance | Ye et al., |
水稻 Oryza sativa | 杂草稻 O. sativa f. spontanea | 抗除草剂 Herbicide tolerance | Bar | F1, F2 | 不显著 No significance | Zhang et al., |
向日葵 Helianthus annus | 野生向日葵 H. annus (wild type) | 抗病 Disease resistance | OxOx | BC3 | 不显著 No significance | Burke & Rieseberg, |
甘蓝型油菜 Brassica napus | 野芥菜 Sinapis arvensis | 抗除草剂 Herbicide tolerance | Bar | BC1-BC7 | 降低 Decrease | Gueritaine et al., |
表2 抗病虫和抗除草剂转基因在人工杂交后代(包括F1及其自交和回交后代)中对群体适合度的影响
Table 2 Impact of insect and disease resistance, and herbicide tolerance transgenes to fitness of artificial hybrid and progeny populations
作物 Crop | 野生近缘种 Wild relative | 性状 Trait | 目标转基因 Transgene | 世代 Generation | 对适合度影响 Impact to fitness | 资料来源 References |
---|---|---|---|---|---|---|
向日葵 Helianthus annus | 野生向日葵 H. annus (wild type) | 抗虫 Insect resistance | Bt (cry1Ac) | BC1 | 提高 Increase | Snow et al., |
甘蓝型油菜 Brassica napus | 白菜型野油菜 B. rapa | 抗虫 Insect resistance | Bt (cry1Ac) | F1 hybrids | 提高 Increase | Vacher et al., |
甘蓝型油菜 Brassica napus | 白菜型野油菜 B. rapa | 抗虫 Insect resistance | Bt (cry1Ac) | F1, BC1F1, BC2F1, BC2F2 | 不显著 No significance | Halfhill et al., |
甘蓝型油菜 Brassica napus | 白菜型野油菜 B. rapa | 抗除草剂 Herbicide tolerance | Bar | BC3 | 不显著 No significance | Snow et al., |
玉米 Zea mays | 墨西哥杂草玉米 Z. mays ssp. mexicana | 抗除草剂 Herbicide tolerance | EPSPS | F1 hybrids | 不显著 No significance | Guadagnuolo et al., |
水稻 Oryza sativa | 一年生野生稻 O. nivara | 抗虫 Insect resistance | CpTI | F3, F4 | 不显著 No significance | Ye et al., |
水稻 Oryza sativa | 杂草稻 O. sativa f. spontanea | 抗除草剂 Herbicide tolerance | Bar | F1, F2 | 不显著 No significance | Zhang et al., |
向日葵 Helianthus annus | 野生向日葵 H. annus (wild type) | 抗病 Disease resistance | OxOx | BC3 | 不显著 No significance | Burke & Rieseberg, |
甘蓝型油菜 Brassica napus | 野芥菜 Sinapis arvensis | 抗除草剂 Herbicide tolerance | Bar | BC1-BC7 | 降低 Decrease | Gueritaine et al., |
[1] |
Allainguillaume J, Alexander M, Bullock JM, Saunders M, Allender CJ, King G, Ford CS, Wilkinson MJ (2006) Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats. Molecular Ecology, 15, 1175-1184.
DOI URL PMID |
[2] |
Ammann K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends in Biotechnology, 23, 388-394.
DOI URL PMID |
[3] |
Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecology Letters, 9, 196-214.
DOI URL PMID |
[4] |
Arriola PE, Ellstrand NC (1997) Fitness of interspecific hybrids in the genus Sorghum: persistence of crop genes in wild populations . Ecological Applications, 7, 512-518.
DOI URL |
[5] |
Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nature Biotechnology, 23, 57-62.
DOI URL PMID |
[6] |
Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113-148.
DOI URL |
[7] |
Burke JM, Rieseberg LH (2003) Fitness effects of transgenic disease resistance in sunflowers. Science, 300, 1250.
DOI URL PMID |
[8] |
Campbell LG, Snow AA, Ridley CE (2006) Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment. Ecology Letters, 9, 1198-1209.
DOI URL PMID |
[9] |
Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytologist, 170, 429-443.
DOI URL |
[10] |
Chen LJ, Lee DS, Song ZP, Suh HS, Lu BR (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany, 93, 67-73.
DOI URL PMID |
[11] |
Chen LY, Snow AA, Wang F, Lu BR (2006) Effects of insect-resistance transgenes on fecundity in rice (Oryza sativa, Poaceae): a test for underlying costs. American Journal of Botany, 93, 94-101.
DOI URL |
[12] |
Claessen D, Gilligan CA, Lutman PJW, van den Bosch F (2005) Which traits promote persistence of feral GM crops? Part 1: Implications of environmental stochasticity. Oikos, 110, 20-29.
DOI URL |
[13] |
Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. The Plant Journal, 33, 19-46.
DOI URL PMID |
[14] |
Dalecky A, Bourguet D, Ponsard S (2007) Does the European corn borer disperse enough for a sustainable control of resistance to Bt maize via the high dose/refuge strategy? Cahiers Agricultures, 16, 171-176.
DOI URL |
[15] | Darmency H, Klein EK, De Garanbe TG, Gouyon PH, Richard-Molard M, Muchembled C (2009) Pollen dispersal in sugar beet production fields. Theoretical and Applied Genetics, 188, 1083-1092. |
[16] | Devaux C, Klein EK, Lavigne C, Sausse C, Messean A (2008) Environmental and landscape effects on cross-pollination rates observed at long distance among French oilseed rape Brassica napus commercial fields. Journal of Applied Ecology, 45, 803-812. |
[17] | Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. American Biology Teacher, 35, 125-129. |
[18] |
Dobzhansky T, Ayala FJ, Stebbins GL, Valentine JW (1977) Evolution. WH Freeman, San Francisco, USA.
URL PMID |
[19] | Du SZ, Dai QL, Feng B, Wang J (2009) The EPSPS gene flow from glyphosate-resistant Brassica napus to untransgene B. napus and wild relative species Orychophragmus violaceus. Acta Physiologiae Plantarum, 31, 119-124. |
[20] |
Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiology, 125, 1543-1545.
URL PMID |
[21] | Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 1163-1170. |
[22] | Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics, 24, 217-242. |
[23] | Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563. |
[24] |
Erickson DL, Fenster CB (2006) Intraspecific hybridization and the recovery of fitness in the native legume Chamaecrista fasciculata. Evolution, 60, 225-233.
URL PMID |
[25] | FAO (2002) Towards a code of conduct for plant biotechnology as it affects the conservation and utilization of plant genetic resources. CGRFA-9/02/18/Annex (ftp://ftp.fao.org/ag/cgrfa/cgrfa9/r9w18ae.pdf) |
[26] |
Fenart S, Austerlitz F, Cuguen J, Arnaud J (2007) Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Molecular Ecology, 16, 3801-3813.
URL PMID |
[27] | Ford CS, Allainguillaume J, Grilli-Chantler P, Cuccato G, Allender CJ, Wilkinson MJ (2006) Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea. Proceedings of the Royal Society B: Biological Sciences, 273, 3111-3115. |
[28] | Giannino D, Nicolodi C, Testone G, Giacomo D, Iannelli MA, Frugis G, Mariotti D (2008) Pollen-mediated transgene flow in lettuce (Lactuca sativa L.). Plant Breeding, 127, 308-314. |
[29] |
Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Rivista di Biologia, 98, 393-417. (in Italian with English abstract).
URL PMID |
[30] |
Guadagnuolo R, Clegg J, Ellstrand NC (2006) Relative fitness of transgenic vs. non-transgenic maize × teosinte hybrids: a field evaluation. Ecological Applications, 16, 1967-1974.
URL PMID |
[31] |
Gueritaine G, Sester M, Eber F, Chevre AM, Darmency H (2002) Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Molecular Ecology, 11, 1419-1426.
URL PMID |
[32] | Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Science, 48, 688-694. |
[33] | Halfhill MD, Millwood RJ, Weissinger AK, Warwick SI, Stewart CN (2003) Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop × weed hybrid generations. Theoretical and Applied Genetics, 107, 1533-1540. |
[34] | Halfhill MD, Sutherland JP, Moon HS, Poppy GM, Warwick SI, Weissinger AK, Rufty TW, Raymer PL, Stewart CN (2005) Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Molecular Ecology, 14, 3177-3189. |
[35] | Harrison RG (1990) Hybrid zones: windows on evolutionary biology. Oxford Survey of Evolutionary Biology, 7, 69-128. |
[36] |
Hartl DL, Clark AG (1988) Principles of Population Genetics, 2nd edn. Sinauer Associates, Sunderland, MA.
DOI URL PMID |
[37] | Hauser TP, Jorgensen RB, Ostergard H (1998) Fitness of backcross and F2 hybrids between weedy Brassica and oilseed rape (B. napus). Heredity, 81, 436-443. |
[38] |
Haygood R, Ives AR, Andow DA (2003) Consequences of recurrent gene flow from crops to wild relatives. Proceedings of the Royal Society B: Biological Sciences, 270, 1879-1886.
URL PMID |
[39] | Heinemann JA (2007) A typology of the effects of (trans)gene flow on the conservation and sustainable use of genetic resources. http://www.fao.org/ag/cgrfa/cgrfa11.htm. |
[40] | Hooftman DAP, Gerard J, Oostermeijer B, Marquard E, den Nijs HCM (2008) Modelling the consequences of crop-wild relative gene flow: a sensitivity analysis of the effects of outcrossing rates and hybrid vigour breakdown in Lactuca. Journal of Applied Ecology, 45, 1094-1103. |
[41] |
Jackson MW, Stinchcombe JR, Korves TM, Schmitt J (2004) Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Molecular Ecology, 13, 3609-3615.
URL PMID |
[42] | James C (2008) Global status of commercialized biotech/GM crops: 2008. ISAAA Brief No. 39, Ithaca NY, USA. |
[43] | Jenczewski E, Ronfort J, Chèvre AM (2002) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environment Biosafety Reservation, 2, 9-24. |
[44] |
Jia SR, Wang F, Shi L, Yuan QH, Liu WG, Liao YL, Li SG, Jin WJ, Peng HP (2007) Transgene flow to hybrid rice and its male-sterile lines. Transgenic Research, 16, 491-501.
URL PMID |
[45] | Kiang YT, Antonvics J, Wu L (1979) The extinction of wild rice (Oryza perennis formosa) in Taiwan. Journal of Asian Ecology, 1, 1-9. |
[46] | Kumara V, Bellindera RR, Brainard DC, Malikc RK, Gupta RK (2008) Risks of herbicide-resistant rice in India: A review. Crop Protection, 27, 320-329. |
[47] | Lefol E, Fleury A, Darmency H (1996) Gene dispersal from transgenic crops. II. Hybridization between oilseed rape and the wild hoary mustard. Sexual Plant Reproduction, 9, 189-196. |
[48] | Levin DA, Smith DM (1996) Hybridization and evolution in Phlox pilosa complex. The American Naturalist, 100, 289-302. |
[49] | Li GP, Wu KM, Gould F, Wang JK, Miao J, Gao XW, Guo YY (2007) Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China. Ecological Entomology, 32, 366-375. |
[50] | Loureiro I, Escorial C, Baudin JMG, Chueca MC (2008) Hybridisation between wheat and Aegilops geniculata and hybrid fertility for potential herbicide resistance transfer. Weed Research, 48, 561-570. |
[51] | Lu B-R (2008) Transgene escape from GM crops and potential biosafety consequences: an environmental perspective. Collection of Biosafety Reviews, 4, 66-141. |
[52] | Lu B-R, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. BioScience, 55, 669-678. |
[53] | Lu B-R (卢宝荣), Fu Q (傅强), Shen ZC (沈志成) (2008) Commercialization of transgenic rice in China: potential environmental biosafety issues. Biodiversity Science (生物多样性), 16, 426-436. |
[54] | Lu B-R, Song ZP, Chen JK (2003) Can transgenic rice cause ecological risks through transgene escape? Progress in Natural Science, 13, 17-24. |
[55] |
Mallory-Smith C, Zapiola M (2008) Gene flow from glyphosate-resistant crops. Pest Management Science, 64, 428-440.
URL PMID |
[56] |
Mercer KL, Andow DA, Wyse DL, Shaw RG (2007) Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecology Letters, 10, 383-393.
URL PMID |
[57] | Messeguer J (2003) Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture, 73, 201-212. |
[58] | Messeguer J, Marfa V, Catala MM, Guiderdoni E, Mele E (2004) A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Molecular Breeding, 13, 103-112. |
[59] | Metz PLJ, Jacobsen E, Nap JP, Pereira A, Stiekema WJ (1997) The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa × B. napus hybrids and their successive backcrosses. Theoretical and Applied Genetics, 95, 442-450. |
[60] | Mizuguti A, Yoshimura Y, Matsuo K (2009) Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions. Weed Biology and Management, 9, 93-96. |
[61] |
Oard J, Cohn MA, Linscombe S, Gealy D, Gravois K (2000) Field evaluation of seed production, shattering, and dormancy in hybrid populations of transgenic rice (Oryza sativa) and the weed, red rice (Oryza sativa) . Plant Science, 157, 13-22.
URL PMID |
[62] | O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Annual Review of Entomology, 50, 271-292. |
[63] |
Oliveira AR, Castro TR, Capalbo DMF, Delalibera I (2007) Toxicological evaluation of genetically modified cotton (Bollgard®) and Dipel® WP on the non-target soil mite Scheloribates praeincisus (Acari: Oribatida). Experimental and Applied Acarology, 41, 191-201.
DOI URL PMID |
[64] | Ortiz-Garcia S, Ezcurra E, Schoel B, Acevedo F, Soberon J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004). Proceedings of the National Academy of Sciences, USA, 102, 12338-12343. |
[65] | Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proceedings of the National Academy of Sciences, USA, 101, 9885-9890. |
[66] | Pasquet RS, Peltier A, Hufford HB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proceedings of the National Academy of Sciences, USA, 105, 13456-13461. |
[67] |
Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature, 414, 541-543.
DOI URL PMID |
[68] |
Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Molecular Ecology, 15, 4243-4255.
URL PMID |
[69] | Richter O (2009) Spatio-temporal patterns of gene flow and dispersal under temperature increase. Mathematical Bioscience, 218, 15-23. |
[70] | Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytologist, 140, 599-624. |
[71] | Rieseberg LH, Kim MJ, Seiler G (1999) Introgression between the cultivated sunflower and sympatric wild relative, Helianthus petiolaris (Asteraceae). International Journal of Plant Sciences, 160, 102-108. |
[72] | Rong J, Xia H, Zhu YY, Wang YY, Lu B-R (2004) Asymmetric gene flow between traditional and hybrid rice varieties (Oryza sativa) indicated by nuclear simple sequence repeats and implications for germplasm conservation. New Phytologist, 163, 439-445. |
[73] | Rong J, Song ZP, Su J, Xia H, Lu B-R, Wang F (2005) Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing. New Phytologist, 168, 559-566. |
[74] | Rong J, Lu BR, Song ZP, Su J, Snow AA, Zhang XS, Sun SG, Chen R, Wang F (2007) Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytologist, 173, 346-353. |
[75] | Shen BC, Zhang MQ, Le YT, Tang ZX, Mi XC, Wei W, Ma KP Stewart CN (2006) Correlated expression of gfp and Bt cry1Ac gene facilitates quantification of transgenic hybridization between Brassicas. Plant Biology, 8, 723-730. |
[76] | Simard MJ, Legere A, Warwick SI (2006) Transgenic Brassica napus field and Brassica rapa weeds in Quebec: sympatry and weed-crop in situ hybridization. Canadian Journal of Botany, 84, 1842-1851. |
[77] | Simpson GG (1944) Tempo and Mode in Evolution. Columbia University Press, USA. |
[78] |
Snow AA (2002) Transgenic crops—why gene flow matters. Nature Biotechnology, 20, 542.
URL PMID |
[79] | Snow AA, Andersen B, Jorgensen RB (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Molecular Ecology, 8, 605-615. |
[80] |
Snow AA, Moran-Palma P, Rieseberg LH, Wszelaki A, Seiler GJ (1998) Fecundity, phenology, and seed dormancy of F-1 wild-crop hybrids in sunflower (Helianthus annuus, Asteraceae). American Journal of Botany, 85, 794-801.
URL PMID |
[81] | Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecological Applications, 13, 279-286. |
[82] | Song ZP, Lu BR, Chen JK (2004a) Pollen flow of cultivated rice measured under experimental conditions. Biodiversity and Conservation, 13, 579-590. |
[83] |
Song ZP, Lu BR, Wang B, Chen JK (2004b) Fitness estimation through performance comparison of F-1 hybrids with their parental species Oryza rufipogon and O. sativa. Annals of Botany, 93, 311-316.
URL PMID |
[84] | Song ZP, Lu B-R, Zhu YG, Chen JK (2002) Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon). New Phytologist, 153, 289-296. |
[85] | Song ZP, Lu B-R, Zhu YG, Chen JK (2003) Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytologist, 157, 657-665. |
[86] |
Spencer LJ, Snow AA (2002) Fecundity of transgenic wild-crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity, 86, 694-702.
URL PMID |
[87] |
Stewart NC, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics, 4, 806-817.
URL PMID |
[88] | Thompson CJ, Thompson BJP, Ades PK, Cousens R, Garnier-Gere P, Landman K, Newbigin E, Burgman MA (2003) Model-based analysis of the likelihood of gene introgression from genetically modified crops into wild relatives. Ecological Modelling, 162, 199-209. |
[89] | Timmons AM, O'Brien ET, Charters YM, Dubbels SJ, Wilkinson MJ (1995) Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica, 85, 417-423. |
[90] | Ureta MS, Cantamutto M, Carrera A, Delucchi C, Poverene M (2008) Natural hybrids between cultivated and wild sunflowers (Helianthus spp.) in Argentina. Genetic Resources and Crop Evolution, 55, 1267-1277. |
[91] |
Vacher C, Weis AE, Hermann D, Kossler T, Young C, Hochberg ME (2004) Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theoretical and Applied Genetics, 109, 806-814.
DOI URL PMID |
[92] |
Vaughan DA, Balazs E, Heslop-Harrison JS (2007) From crop domestication to super domestication. Annals of Botany, 100, 893-901.
URL PMID |
[93] | Wang CY (王长永), Liu Y (刘燕), Zhou J (周骏), Chen JQ (陈建群), Qin P (钦佩) (2007) Monitoring of pollen-mediated gene flow from transgenic Bt cotton. Chinese Journal of Applied Ecology (应用生态学报), 18, 801-806. (in Chinese with English abstract) |
[94] |
Wang R-L, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature, 398, 236-239.
DOI URL PMID |
[95] |
Wang F, Yuan QH, Shi L, Qian Q, Liu WG, Kuang BG, Zeng DL, Liao YL, Cao B, Jia SR (2006) A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli). Plant Biotechnology Journal, 4, 667-676.
URL PMID |
[96] |
Warwick SI, Legere A, Simard MJ, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Molecular Ecology, 17, 1387-1395.
URL PMID |
[97] | Warwick SI, Simard MJ, Legere A, Beckie HJ, Braun L, Zhu B, Mason P, Seguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: B. rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) OE Schulz. Theoretical and Applied Genetics, 107, 528-539. |
[98] | Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conservation Biology, 15, 1039-1053. |
[99] |
Wu KM (2007) Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. Journal of Invertebrate Pathology, 95, 220-223.
URL PMID |
[100] | Wu WX, Ye QF, Min H, Duan XJ, Jin WM (2003) Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biology and Biochemistry, 36, 289-295. |
[101] |
Xia H, Lu BR, Su J, Chen R, Rong R, Song ZP, Wang F (2009) Normal expression of insect-resistant transgene in progenies of common wild rice crossed with genetically modified rice: its implication in ecological biosafety assessment. Theoretical and Applied Genetics. (in press).
URL PMID |
[102] | Yao KM, Hu N, Chen WL, Li RZ, Yuan QH, Wang F, Qian Q, Jia SR (2008) Establishment of a rice transgene flow model for predicting maximum distance of gene flow in southern China. New Phytologist, 180, 217-228. |
[103] | Ye PY (叶平扬), Dong SS (董姗姗), Lu BR (卢宝荣), Wang F (王锋), Su J (苏军), Song ZP (宋志平) (2008) Seed germination test for hybrids between transgenic cultivated rice (Oryza sativa) and annual common wild rice (O. nivara). Journal of Fudan University (Natural Sciences)(复旦大学学报), 47, 329-335. (in Chinese with English abstract) |
[104] | Zapiola ML, Campbell CK, Butler MD, Mallory-Smith CA (2008) Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. Journal of Applied Ecology, 45, 486-494. |
[105] | Zhang NY, Linscombe S, Oard J (2003) Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica, 130, 35-45. |
[106] |
Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta, 220, 241-250.
DOI URL PMID |
[1] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[2] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[3] | 葛颂. 中国植物系统和进化生物学研究进展[J]. 生物多样性, 2022, 30(7): 22385-. |
[4] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[5] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[6] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[7] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[8] | 杨小凤, 李小蒙, 廖万金. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 2021, 29(6): 825-842. |
[9] | 陈旸康, 王益, 李家亮, 王文韬, 冯端宇, 毛康珊. 主流分子钟定年方法的原理、误差来源和使用建议[J]. 生物多样性, 2021, 29(5): 629-646. |
[10] | 李三和, 刘凯, 闸雯俊, 徐华山, 李培德, 周雷, 游艾青. 转BPH9和Bar基因抗褐飞虱耐除草剂水稻‘H23’对非靶标生物的影响[J]. 生物多样性, 2021, 29(4): 488-494. |
[11] | 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云. 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(4): 419-427. |
[12] | 董媛媛. 基于DPSEEA模型构建生物安全评价体系:以深圳市为例[J]. 生物多样性, 2021, 29(11): 1530-1538. |
[13] | 范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞. 红砂基因组大小变异及物种分化[J]. 生物多样性, 2021, 29(10): 1308-1320. |
[14] | 孙思邈, 陈吉欣, 冯炜炜, 张昶, 黄凯, 管铭, 孙建坤, 刘明超, 冯玉龙. 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样性, 2021, 29(1): 72-80. |
[15] | 于良瑞, 朱政财, 潘晓云. 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较[J]. 生物多样性, 2020, 28(6): 651-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn