生物多样性 ›› 2009, Vol. 17 ›› Issue (6): 652-663. DOI: 10.3724/SP.J.1003.2009.09065
所属专题: 群落中的物种多样性:格局与机制; 青藏高原生物多样性与生态安全
收稿日期:
2009-03-21
接受日期:
2009-05-13
出版日期:
2009-11-20
发布日期:
2009-11-20
通讯作者:
林鑫
作者简介:
*E-mail: linxin.pku@gmail.com基金资助:
Xin Lin*(), Zhiheng Wang, Zhiyao Tang, Shuqing Zhao, Jingyun Fang
Received:
2009-03-21
Accepted:
2009-05-13
Online:
2009-11-20
Published:
2009-11-20
Contact:
Xin Lin
摘要:
物种丰富度的大尺度地理格局及其成因是宏观生态学和生物地理学的中心议题之一。本文利用中国陆栖哺乳动物分布数据, 结合高分辨率的气候、地形、植被等环境信息, 探讨了中国陆栖哺乳动物及主要类群的物种丰富度格局及其影响因素。结果显示, 中国陆栖哺乳动物物种丰富度具有显著的纬度梯度格局, 总体上呈现出由低纬度向高纬度逐渐减少的趋势, 并与宏观地形具有良好的对应关系; 其中, 亚热带、热带西部山区的物种丰富度最高, 而东部平原地区、西北干旱区和青藏高原腹地则是丰富度的低值区。各主要类群的物种丰富度格局既有相似性, 又存在差异。最优线性模型的分析结果显示, 由归一化植被指数(NDVI)、生态系统类型数和气温年较差构成的回归模型对哺乳动物物种丰富度格局的解释率最高, 其中NDVI对模型解释率的贡献最大, 这表明中国陆栖哺乳动物物种丰富度的地理分异受多种环境因素的共同影响, 其中植被生产力起主导作用。各主要类群的最优线性模型显示, 影响物种丰富度格局的主要环境因子因类群而异, 这可能反映了各类群进化历史及生理适应的差异。
林鑫, 王志恒, 唐志尧, 赵淑清, 方精云 (2009) 中国陆栖哺乳动物物种丰富度的地理格局及其与环境因子的关系. 生物多样性, 17, 652-663. DOI: 10.3724/SP.J.1003.2009.09065.
Xin Lin, Zhiheng Wang, Zhiyao Tang, Shuqing Zhao, Jingyun Fang (2009) Geographic patterns and environmental correlates of terrestrial mammal species richness in China. Biodiversity Science, 17, 652-663. DOI: 10.3724/SP.J.1003.2009.09065.
最小值Minimum | 最大值Maximum | 平均值 Mean | 标准差 SD | |
---|---|---|---|---|
物种丰富度 Species richness | ||||
陆栖哺乳类 Terrestrial mammals | 16 | 177 | 59.2 | 31.0 |
食虫目 Eulipotyphla | 0 | 27 | 5.8 | 5.1 |
翼手目 Chiroptera | 0 | 45 | 9.7 | 10.5 |
灵长目 Primates | 0 | 9 | 0.9 | 1.6 |
食肉目 Carnivora | 3 | 34 | 14.5 | 6.7 |
偶蹄目 Artiodactyla | 1 | 18 | 6.0 | 2.8 |
兔形目 Lagomorpha | 0 | 10 | 3.1 | 2.1 |
啮齿目 Rodentia | 2 | 52 | 18.1 | 9.8 |
环境因子 Environmental variables | ||||
年均温 Mean annual temperature (MAT, ℃)1 | -8.3 | 24.1 | 6.8 | 7.8 |
最热月均温 Mean temperature of the warmest month (MTWM, ℃)2 | 10.0 | 36.5 | 25.1 | 7.0 |
最冷月均温 Mean temperature of the coldest month (MTCM, ℃)3 | -37.7 | 14.4 | -13.7 | 11.1 |
潜在蒸散量 Potential evapotranspiration (PET, mm)4 | 257.2 | 1,320.2 | 627.9 | 220.6 |
年降水量 Annual precipitation (AP, mm)5 | 17.7 | 2,542.7 | 596.3 | 506.9 |
实际蒸散量 Actual evapotranspiration (AET, mm)6 | 17.7 | 1,298.8 | 452.9 | 311.0 |
归一化植被指数 Normalized difference vegetation index (NDVI)7 | 0.043 | 0.667 | 0.286 | 0.166 |
气温年较差 Annual range of temperature (ART, ℃)8 | 16.4 | 60.6 | 38.9 | 9.4 |
海拔变幅 Elevational range (ER, m)9 | 41 | 6,717 | 1,645.6 | 1,148.0 |
生态系统类型数 Number of ecosystems (VEGE)10 | 1 | 55 | 15.8 | 8.2 |
表1 100 km×100 km等面积网格系统中陆栖哺乳动物物种丰富度及各环境因子的基本统计信息(n = 900)
Table 1 Descriptive statistics of species richness and environmental variables in 100 km×100 km grid system (n = 900)
最小值Minimum | 最大值Maximum | 平均值 Mean | 标准差 SD | |
---|---|---|---|---|
物种丰富度 Species richness | ||||
陆栖哺乳类 Terrestrial mammals | 16 | 177 | 59.2 | 31.0 |
食虫目 Eulipotyphla | 0 | 27 | 5.8 | 5.1 |
翼手目 Chiroptera | 0 | 45 | 9.7 | 10.5 |
灵长目 Primates | 0 | 9 | 0.9 | 1.6 |
食肉目 Carnivora | 3 | 34 | 14.5 | 6.7 |
偶蹄目 Artiodactyla | 1 | 18 | 6.0 | 2.8 |
兔形目 Lagomorpha | 0 | 10 | 3.1 | 2.1 |
啮齿目 Rodentia | 2 | 52 | 18.1 | 9.8 |
环境因子 Environmental variables | ||||
年均温 Mean annual temperature (MAT, ℃)1 | -8.3 | 24.1 | 6.8 | 7.8 |
最热月均温 Mean temperature of the warmest month (MTWM, ℃)2 | 10.0 | 36.5 | 25.1 | 7.0 |
最冷月均温 Mean temperature of the coldest month (MTCM, ℃)3 | -37.7 | 14.4 | -13.7 | 11.1 |
潜在蒸散量 Potential evapotranspiration (PET, mm)4 | 257.2 | 1,320.2 | 627.9 | 220.6 |
年降水量 Annual precipitation (AP, mm)5 | 17.7 | 2,542.7 | 596.3 | 506.9 |
实际蒸散量 Actual evapotranspiration (AET, mm)6 | 17.7 | 1,298.8 | 452.9 | 311.0 |
归一化植被指数 Normalized difference vegetation index (NDVI)7 | 0.043 | 0.667 | 0.286 | 0.166 |
气温年较差 Annual range of temperature (ART, ℃)8 | 16.4 | 60.6 | 38.9 | 9.4 |
海拔变幅 Elevational range (ER, m)9 | 41 | 6,717 | 1,645.6 | 1,148.0 |
生态系统类型数 Number of ecosystems (VEGE)10 | 1 | 55 | 15.8 | 8.2 |
图1 中国陆栖哺乳动物(A)及主要类群(B: 食虫目; C: 翼手目; D: 灵长目; E: 食肉目; F: 偶蹄目; G: 兔形目; H: 啮齿目)的物种丰富度格局(100 km×100 km)
Fig. 1 Patterns of terrestrial mammal species richness in China (100 km×100 km). A, Terrestrial mammals; B, Eulipotyphla; C, Chiroptera; D, Primates; E, Carnivora; F, Artiodactyla; G, Lagomorpha; H, Rodentia.
陆栖哺乳类Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | 1.000 | |||||||
食虫目 Eulipotyphla | 0.801*** | 1.000 | ||||||
翼手目 Chiroptera | 0.845*** | 0.548* | 1.000 | |||||
灵长目 Primates | 0.839*** | 0.530* | 0.811*** | 1.000 | ||||
食肉目 Carnivora | 0.920*** | 0.690*** | 0.755** | 0.815*** | 1.000 | |||
偶蹄目 Artiodactyla | 0.589* | 0.350ns | 0.302ns | 0.567** | 0.685** | 1.000 | ||
兔形目 Lagomorpha | 0.018ns | 0.018ns | -0.332ns | -0.051ns | 0.117ns | 0.575** | 1.000 | |
啮齿目 Rodentia | 0.847*** | 0.743*** | 0.581* | 0.573* | 0.654** | 0.360ns | -0.027ns | 1.000 |
表2 中国陆栖哺乳动物及主要类群物种丰富度的相关性矩阵(n = 900)
Table 2 Correlation matrix among species richness of all terrestrial mammals and major orders (n = 900)
陆栖哺乳类Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | 1.000 | |||||||
食虫目 Eulipotyphla | 0.801*** | 1.000 | ||||||
翼手目 Chiroptera | 0.845*** | 0.548* | 1.000 | |||||
灵长目 Primates | 0.839*** | 0.530* | 0.811*** | 1.000 | ||||
食肉目 Carnivora | 0.920*** | 0.690*** | 0.755** | 0.815*** | 1.000 | |||
偶蹄目 Artiodactyla | 0.589* | 0.350ns | 0.302ns | 0.567** | 0.685** | 1.000 | ||
兔形目 Lagomorpha | 0.018ns | 0.018ns | -0.332ns | -0.051ns | 0.117ns | 0.575** | 1.000 | |
啮齿目 Rodentia | 0.847*** | 0.743*** | 0.581* | 0.573* | 0.654** | 0.360ns | -0.027ns | 1.000 |
陆栖哺乳类 Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
年均温 (MAT, ℃) | 0.541ns | 0.345ns | 0.742** | 0.515* | 0.434ns | -0.087ns | -0.593** | 0.458ns |
最热月均温 (MTWM, ℃) | 0.209ns | 0.218ns | 0.371ns | 0.092ns | 0.074ns | -0.439ns | -0.653*** | 0.337ns |
最冷月均温 (MTCM, ℃) | 0.627* | 0.328ns | 0.839** | 0.669** | 0.550* | 0.134ns | -0.464* | 0.424ns |
潜在蒸散量 (PET, mm) | 0.432ns | 0.268ns | 0.671* | 0.401ns | 0.327ns | -0.224ns | -0.660*** | 0.381ns |
年降水量 (AP, mm) | 0.686* | 0.411ns | 0.863** | 0.678* | 0.687* | 0.282ns | -0.349ns | 0.390ns |
实际蒸散量 (AET, mm) | 0.651* | 0.440ns | 0.821** | 0.610* | 0.645* | 0.186ns | -0.391ns | 0.395ns |
植被指数 (NDVI) | 0.691* | 0.579* | 0.744* | 0.558* | 0.683* | 0.242ns | -0.272ns | 0.482ns |
气温年较差 (ART, ℃) | -0.587* | -0.226ns | -0.718** | -0.725** | -0.598* | -0.488** | -0.061ns | -0.251ns |
海拔变幅 (ER, m) | 0.318ns | 0.159ns | 0.091ns | 0.257ns | 0.402** | 0.591*** | 0.482*** | 0.214ns |
生态系统类型数 (VEGE) | 0.426** | 0.410** | 0.116ns | 0.142ns | 0.382* | 0.347* | 0.248ns | 0.577*** |
表3 中国陆栖哺乳动物及主要类群物种丰富度与环境因子的单因素相关关系(n = 900)
Table 3 Bivariate correlation coefficients (r) between species richness of terrestrial mammals (for overall terrestrial mammals and each major mammalian order, respectively) and environmental variables (n = 900)
陆栖哺乳类 Terrestrial mammals | 食虫目 Eulipotyphla | 翼手目 Chiroptera | 灵长目 Primates | 食肉目 Carnivora | 偶蹄目 Artiodactyla | 兔形目 Lagomorpha | 啮齿目 Rodentia | |
---|---|---|---|---|---|---|---|---|
年均温 (MAT, ℃) | 0.541ns | 0.345ns | 0.742** | 0.515* | 0.434ns | -0.087ns | -0.593** | 0.458ns |
最热月均温 (MTWM, ℃) | 0.209ns | 0.218ns | 0.371ns | 0.092ns | 0.074ns | -0.439ns | -0.653*** | 0.337ns |
最冷月均温 (MTCM, ℃) | 0.627* | 0.328ns | 0.839** | 0.669** | 0.550* | 0.134ns | -0.464* | 0.424ns |
潜在蒸散量 (PET, mm) | 0.432ns | 0.268ns | 0.671* | 0.401ns | 0.327ns | -0.224ns | -0.660*** | 0.381ns |
年降水量 (AP, mm) | 0.686* | 0.411ns | 0.863** | 0.678* | 0.687* | 0.282ns | -0.349ns | 0.390ns |
实际蒸散量 (AET, mm) | 0.651* | 0.440ns | 0.821** | 0.610* | 0.645* | 0.186ns | -0.391ns | 0.395ns |
植被指数 (NDVI) | 0.691* | 0.579* | 0.744* | 0.558* | 0.683* | 0.242ns | -0.272ns | 0.482ns |
气温年较差 (ART, ℃) | -0.587* | -0.226ns | -0.718** | -0.725** | -0.598* | -0.488** | -0.061ns | -0.251ns |
海拔变幅 (ER, m) | 0.318ns | 0.159ns | 0.091ns | 0.257ns | 0.402** | 0.591*** | 0.482*** | 0.214ns |
生态系统类型数 (VEGE) | 0.426** | 0.410** | 0.116ns | 0.142ns | 0.382* | 0.347* | 0.248ns | 0.577*** |
环境因子 Environmental variables | 标准化系数 Standardized coefficient | 偏决定系数 Partial r2 | 模型解释率 (校正后) Adjusted R2 | 显著性水平 (校正后) Adjusted P | ||
---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.461 0.324 -0.351 | 0.318 0.231 0.218 | 0.662 | 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.525 0.348 0.300 | 0.332 0.262 0.141 | 0.660 | 0.001 | |
食虫目 Eulipotyphla | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.545 0.310 0.050 | 0.279 0.140 0.003 | 0.430 | 0.002 |
Model II | 植被指数 (NDVI) 生态系统类型数 (VEGE) 海拔变幅 (ER) | 0.528 0.287 0.049 | 0.315 0.094 0.003 | 0.430 | 0.002 | |
翼手目 Chiroptera | Model I | 最冷月均温 (MTCM) 植被指数 (NDVI) 海拔变幅 (ER) | 0.606 0.375 0.112 | 0.527 0.298 0.058 | 0.797 | < 0.001 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.574 0.364 0.306 | 0.526 0.286 0.267 | 0.796 | < 0.001 | |
灵长目 Primates | Model I | 气温年较差 (ART) 植被指数 (NDVI) 海拔变幅 (ER) | -0.548 0.301 0.104 | 0.324 0.137 0.022 | 0.590 | 0.002 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.620 0.234 0.076 | 0.390 0.075 0.011 | 0.586 | 0.002 | |
食肉目 Carnivora | Model I | 植被指数 (NDVI) 海拔变幅 (ER) 气温年较差 (ART) | 0.619 0.382 -0.180 | 0.467 0.282 0.063 | 0.684 | < 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.599 0.437 0.178 | 0.408 0.375 0.058 | 0.682 | < 0.001 | |
偶蹄目 Artiodactyla | Model I | 年降水量 (AP) 海拔变幅 (ER) 最热月均温 (MTWM) | 0.418 0.420 -0.407 | 0.248 0.237 0.206 | 0.543 | < 0.001 |
Model II | 海拔变幅 (ER) 植被指数 (NDVI) 最热月均温 (MTWM) | 0.454 0.400 -0.387 | 0.266 0.232 0.190 | 0.533 | < 0.001 | |
兔形目 Lagomorpha | Model I | 最热月均温 (MTWM) 生态系统类型数 (VEGE) 实际蒸散量 (AET) | -0.599 0.289 -0.182 | 0.398 0.152 0.058 | 0.532 | < 0.001 |
Model II | 潜在蒸散量 (PET) 海拔变幅 (ER) 生态系统类型数 (VEGE) | -0.589 0.299 0.139 | 0.393 0.069 0.030 | 0.532 | < 0.001 | |
啮齿目 Rodentia | Model I | 生态系统类型数 (VEGE) 年均温 (MAT) 植被指数 (NDVI) | 0.514 0.291 0.214 | 0.352 0.105 0.058 | 0.531 | < 0.001 |
Model II | 生态系统类型数 (VEGE) 植被指数 (NDVI) 潜在蒸散量 (PET) | 0.528 0.251 0.238 | 0.354 0.078 0.074 | 0.514 | < 0.001 |
表4 中国陆栖哺乳动物及主要类群物种丰富度与环境因子的最优线性模型
Table 4 Determinants of species richness for terrestrial mammals and different orders from best-fit explanatory models
环境因子 Environmental variables | 标准化系数 Standardized coefficient | 偏决定系数 Partial r2 | 模型解释率 (校正后) Adjusted R2 | 显著性水平 (校正后) Adjusted P | ||
---|---|---|---|---|---|---|
陆栖哺乳类 Terrestrial mammals | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.461 0.324 -0.351 | 0.318 0.231 0.218 | 0.662 | 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.525 0.348 0.300 | 0.332 0.262 0.141 | 0.660 | 0.001 | |
食虫目 Eulipotyphla | Model I | 植被指数 (NDVI) 生态系统类型数 (VEGE) 气温年较差 (ART) | 0.545 0.310 0.050 | 0.279 0.140 0.003 | 0.430 | 0.002 |
Model II | 植被指数 (NDVI) 生态系统类型数 (VEGE) 海拔变幅 (ER) | 0.528 0.287 0.049 | 0.315 0.094 0.003 | 0.430 | 0.002 | |
翼手目 Chiroptera | Model I | 最冷月均温 (MTCM) 植被指数 (NDVI) 海拔变幅 (ER) | 0.606 0.375 0.112 | 0.527 0.298 0.058 | 0.797 | < 0.001 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.574 0.364 0.306 | 0.526 0.286 0.267 | 0.796 | < 0.001 | |
灵长目 Primates | Model I | 气温年较差 (ART) 植被指数 (NDVI) 海拔变幅 (ER) | -0.548 0.301 0.104 | 0.324 0.137 0.022 | 0.590 | 0.002 |
Model II | 气温年较差 (ART) 植被指数 (NDVI) 最热月均温 (MTWM) | -0.620 0.234 0.076 | 0.390 0.075 0.011 | 0.586 | 0.002 | |
食肉目 Carnivora | Model I | 植被指数 (NDVI) 海拔变幅 (ER) 气温年较差 (ART) | 0.619 0.382 -0.180 | 0.467 0.282 0.063 | 0.684 | < 0.001 |
Model II | 植被指数 (NDVI) 海拔变幅 (ER) 最冷月均温 (MTCM) | 0.599 0.437 0.178 | 0.408 0.375 0.058 | 0.682 | < 0.001 | |
偶蹄目 Artiodactyla | Model I | 年降水量 (AP) 海拔变幅 (ER) 最热月均温 (MTWM) | 0.418 0.420 -0.407 | 0.248 0.237 0.206 | 0.543 | < 0.001 |
Model II | 海拔变幅 (ER) 植被指数 (NDVI) 最热月均温 (MTWM) | 0.454 0.400 -0.387 | 0.266 0.232 0.190 | 0.533 | < 0.001 | |
兔形目 Lagomorpha | Model I | 最热月均温 (MTWM) 生态系统类型数 (VEGE) 实际蒸散量 (AET) | -0.599 0.289 -0.182 | 0.398 0.152 0.058 | 0.532 | < 0.001 |
Model II | 潜在蒸散量 (PET) 海拔变幅 (ER) 生态系统类型数 (VEGE) | -0.589 0.299 0.139 | 0.393 0.069 0.030 | 0.532 | < 0.001 | |
啮齿目 Rodentia | Model I | 生态系统类型数 (VEGE) 年均温 (MAT) 植被指数 (NDVI) | 0.514 0.291 0.214 | 0.352 0.105 0.058 | 0.531 | < 0.001 |
Model II | 生态系统类型数 (VEGE) 植被指数 (NDVI) 潜在蒸散量 (PET) | 0.528 0.251 0.238 | 0.354 0.078 0.074 | 0.514 | < 0.001 |
[1] |
Andrews P, O’Brien EM (2000) Climate, vegetation, and predictable gradients in mammal species richness in Southern Africa. Journal of Zoology, 251, 205-231.
DOI URL |
[2] |
Badgley C, Fox DL (2000) Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography, 27, 1437-1467.
DOI URL |
[3] |
Brown JH (1981) Two decades of homage to Santa Rosalia: toward a general theory of diversity. American Zoologist, 21, 877-888.
DOI URL |
[4] |
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
DOI URL |
[5] | Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer, Sunderland, Mass. |
[6] |
Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society B: Biological Sciences, 274, 1167-1173.
DOI URL PMID |
[7] | Chen CD (陈昌笃) (1998) China’s Biodiversity: A Country Study (中国生物多样性国情研究报告). China Environmental Science Press, Beijing. (in Chinese) |
[8] | China Wildlife Conservation Association (中国野生动物保护协会) (2005) Atlas of Mammals of China (中国哺乳动物图鉴). He’nan Science and Technology Press, Zhengzhou. (in Chinese) |
[9] | Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences, 273, 2257-2266. |
[10] |
Connell JH, Orias E (1964) The ecological regulation of species diversity. The American Naturalist, 98, 399-414.
DOI URL |
[11] |
Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
DOI URL |
[12] |
Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature, 329, 326-327.
DOI URL |
[13] |
Defries RS, Townshend JRG (1994) NDVI-derived land cover classifications at a global scale. International Journal of Remote Sensing, 15, 3567-3586.
DOI URL |
[14] |
Ding TS, Yuan HW, Geng S, Koh CN, Lee PF (2006) Macro-scale bird species richness patterns of the East Asian mainland and islands: energy, area and isolation. Journal of Biogeography, 33, 683-693.
DOI URL |
[15] |
Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 12, 53-64.
DOI URL |
[16] |
Dutilleul P, Clifford P, Richardson S, Hemon D (1993) Modifying the t-test for assessing the correlation between two spatial processes. Biometrics, 49, 305-314.
DOI URL |
[17] | Editorial Board of Vegetation Map of China, Chinese Academy of Sciences (中国科学院中国植被图编辑委员会) (2001) Vegetation Atlas of China (中国植被图集). Science Press, Beijing. (in Chinese) |
[18] |
Fang JY, Yoda K (1990) Water balance and distribution of vegetation (Climate and vegetation of China III). Ecological Research, 5, 9-23.
DOI URL |
[19] | Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF (2004) Mammalogy: Adaptation, Diversity, Ecology, 2nd edn. McGraw-Hill Higher Education, New York. |
[20] |
Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536.
DOI URL PMID |
[21] |
Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
DOI URL PMID |
[22] |
Hawkins BA, Porter EE, Diniz-Filho JAF (2003a) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84, 1608-1623.
DOI URL |
[23] |
Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003b) Energy, water, and broad scale geographic patterns of species richness. Ecology, 84, 3105-3117.
DOI URL |
[24] |
Hawkins BA, Porter EE (2003) Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology and Biogeography, 12, 475-481.
DOI URL |
[25] |
He FL, Legendre P (1996) On species-area relations. The American Naturalist, 148, 719-737.
DOI URL |
[26] | IUCN (2008) 2008 IUCN Red List of Threatened Species. http://www.iucnredlist.org, accessed Mar 25, 2009. |
[27] |
Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
DOI URL PMID |
[28] |
Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252-254.
DOI URL |
[29] |
Kerr JT, Southwood TRE, Cihlar J (2001) Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proceedings of the National Academy of Sciences, USA, 98, 11365-11370.
DOI URL |
[30] |
Klopfer PH (1959) Environmental determinants of faunal diversity. The American Naturalist, 93, 337-342.
DOI URL |
[31] |
Klopfer PH, MacArthur R (1960) Niche size and faunal diversity. The American Naturalist, 94, 293-300.
DOI URL |
[32] |
Latham RE, Ricklefs RE (1993) Global patterns of tree species richness in moist forests: energy diversity theory does not account for variation in species richness. Oikos, 67, 325-333.
DOI URL |
[33] | MacArthur RH, Wilson EO(1967) The Theory of Island Biogeography. Princeton University Press, Princeton. |
[34] |
Oberdorff T, Guegan JF, Hugueny B (1995) Global scale patterns of fish species richness in rivers. Ecography, 18, 345-352.
DOI URL |
[35] |
O’Brien EM (1998) Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography, 25, 379-398.
DOI URL |
[36] |
Owen JG (1988) On productivity as a predictor of rodent and carnivore diversity. Ecology, 69, 1161-1165.
DOI URL |
[37] |
Owen JG (1990) Patterns of mammalian species richness in relation to temperature, productivity, and variance in elevation. Journal of Mammalogy, 71, 1-13.
DOI URL |
[38] | Pan QH (潘清华), Wang YX (王应祥), Yan K (岩崑) (2007) A Field Guide to the Mammals of China (中国哺乳动物彩色图鉴). China Forestry Publishing House, Beijing. (in Chinese) |
[39] |
Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. The American Naturalist, 100, 33-46.
DOI URL |
[40] |
Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407, 180-182.
DOI URL PMID |
[41] |
Qian H, Wang XH, Wang SL (2007) Environmental determinants of amphibian and reptile species richness in China. Ecography, 30, 471-482.
DOI URL |
[42] | Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge. |
[43] | R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. |
[44] |
Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences, USA, 98, 4534-4539.
DOI URL |
[45] |
Real R, Barbosa AM, Porras D, Kin MS, Marquez AL, Guerrero JC, Palomo JP, Justo ER, Vargas JM (2003) Relative importance of environment, human activity and spatial situation in determining the distribution of terrestrial mammal diversity in Argentina. Journal of Biogeography, 30, 939-947.
DOI URL |
[46] |
Rensburg BJ, Chown SL, Gaston KJ (2002) Species richness, environmental correlates, and spatial scale: a test using South African birds. The American Naturalist, 159, 566-577.
DOI URL PMID |
[47] |
Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science, 235, 167-171.
DOI URL PMID |
[48] |
Ricklefs RE, Latham RE, Qian H (1999) Global patterns of tree species richness in moist forest: distinguishing ecological influences and historical contingency. Oikos, 86, 369-373.
DOI URL |
[49] |
Rodriguez MA, Belmontes JA, Hawkins BA (2005) Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecologica, 28, 65-70.
DOI URL |
[50] | Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge. |
[51] |
Rosenzweig ML, Ziv Y (1999) The echo pattern of species diversity: pattern and processes. Ecography, 22, 614-628.
DOI URL |
[52] |
Ruggiero A, Kitzberger T (2004) Environmental correlates of mammal species in South America: effects of spatial structure, taxonomy and geographic range. Ecography, 27, 401-416.
DOI URL |
[53] |
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Nobuo I, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Georgina MM, Mallon DP, Masi M, McKnight MW, Medellin RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, Silva ND, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vie JC, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science, 322, 225-230.
DOI URL PMID |
[54] |
Shmida A, Wilson MV (1985) Biological determinants of species diversity. Journal of Biogeography, 12, 1-20.
DOI URL |
[55] |
Simpson GG (1964) Species density of North American recent mammals. Systematic Zoology, 13, 57-73.
DOI URL |
[56] |
Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240-256.
DOI URL |
[57] | Thornthwaite CW (1948) An approach toward a rational classification of climate. Geographical Review, 38, 57-94. |
[58] |
Tognelli MF, Kelt D (2004) Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27, 427-436.
DOI URL |
[59] |
Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos, 48, 195-205.
DOI URL |
[60] |
White P, Kerr JT (2006) Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century . Ecography, 29, 908-918.
DOI URL |
[61] |
Whittaker RH, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.
DOI URL |
[62] | Wildlife Conservation Society (WCS), Institute of Zoology, Chinese Academy of Sciences (中国科学院动物研究所) (2005) China Species Information System (CSIS) (中国物种信息服务). http://www.chinabiodiversity.com. (in Chinese) |
[63] |
Wilson JW (1974) Analytical zoogeography of North American mammals. Evolution, 28, 124-140.
URL PMID |
[64] |
Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506.
DOI URL |
[65] | Zhang RZ (张荣祖) (1999) Zoogeography of China (中国动物地理). Science Press, Beijing. (in Chinese) |
[66] | Zhang RZ (张荣祖), Lin YL (林永烈) (1985) The distribution tendency of land mammals in China and adjacent areas. Acta Zoologica Sinica (动物学报), 31, 187-197. (in Chinese with English abstract) |
[67] |
Zhao SQ, Fang JY, Peng CH, Tang ZY (2006a) The relationships between terrestrial vertebrate species richness in China’s nature reserves and environmental variables. Canadian Journal of Zoology, 84, 1368-1374.
DOI URL |
[68] |
Zhao SQ, Fang JY, Peng CH, Tang ZY, Piao SL (2006b) Patterns of fish species richness in China’s lakes. Global Ecology and Biogeography, 15, 386-394.
DOI URL |
[1] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[2] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[3] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[4] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[5] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[6] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
[7] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[8] | 吴墨栩, 安明态, 田力, 刘锋. 茂兰喀斯特森林木本植物性系统数量特征及其与环境因子的关系[J]. 生物多样性, 2022, 30(11): 22025-. |
[9] | 刘璐, 迟瑶, 吴朝宁, 钱天陆, 王结臣. 陆栖哺乳动物的地理隔离研究进展[J]. 生物多样性, 2021, 29(8): 1134-1145. |
[10] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[11] | 蒋日进,张琳琳,徐开达,李鹏飞,肖祎,樊紫薇. 浙江中南部近岸海域游泳动物功能群特征与多样性[J]. 生物多样性, 2019, 27(12): 1330-1338. |
[12] | 吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545-553. |
[13] | 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589. |
[14] | 杨国栋, 季芯悦, 陈林, 钟育谦, 翟飞飞, 伊贤贵, 王贤荣. 基于SOM的野生秤锤树群落的空间分布和环境解释[J]. 生物多样性, 2018, 26(12): 1268-1276. |
[15] | 殷秀琴, 陶岩, 王海霞, 马辰, 寇新昌, 许还, 崔东. 我国东北森林土壤动物生态学研究现状与展望[J]. 生物多样性, 2018, 26(10): 1083-1090. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn