生物多样性 ›› 2009, Vol. 17 ›› Issue (6): 644-651. DOI: 10.3724/SP.J.1003.2009.08338
所属专题: 群落中的物种多样性:格局与机制
收稿日期:
2008-12-22
接受日期:
2009-11-13
出版日期:
2009-11-20
发布日期:
2009-11-20
通讯作者:
沈泽昊
作者简介:
*E-mail: shzh@urban.pku.edu.cn基金资助:
Received:
2008-12-22
Accepted:
2009-11-13
Online:
2009-11-20
Published:
2009-11-20
Contact:
Zehao Shen
摘要:
根据Rapoport法则, 动物、植物物种的纬度或海拔分布宽度存在着从高纬度或高海拔地区向低纬度或低海拔地区逐渐变窄的现象。本文基于物种的海拔分布数据, 分析了神农架维管束植物及不同种域宽度组的物种丰富度海拔格局; 采用已有的4种方法和本文改进的种域分组中点法, 分析了海拔梯度上种域宽度与种域中点的关系, 并检验其是否符合Rapoport法则。结果表明, 神农架地区维管植物丰富度的海拔梯度分布格局呈单峰型, 峰值在1,000-1,500 m; 不同种域组的物种丰富度分布具有类似的单峰格局, 但随着种域宽度减小, 其物种丰富度的峰值逐渐偏向低海拔。对于神农架的物种海拔分布数据, Stevens方法、Pagel方法和逐种方法的结果都支持Rapoport法则, 而中点法的结果主要反映中域效应的影响, 种域分组中点法可有效控制中域效应的影响, 但不支持Rapoport法则。上述结果表明, 对于Rapoport法则的检验亟待研究方法的改进; 而种域的海拔格局及其形成机制, 还需要更多案例的比较研究, 才能形成普遍性的认识。
卢绮妍, 沈泽昊 (2009) 神农架海拔梯度上的植物种域分布特征及Rapoport法则检验. 生物多样性, 17, 644-651. DOI: 10.3724/SP.J.1003.2009.08338.
Qiyan Lu, Zehao Shen (2009) Altitudinal pattern of species range size of vascular plants in Mt. Shennongjia: a test of Rapoport’s rule. Biodiversity Science, 17, 644-651. DOI: 10.3724/SP.J.1003.2009.08338.
图3 神农架4个种域级的物种的丰富度(a)和相对丰富度(b)的海拔格局。A、B、C、D分别为全部分析物种中种域从窄到宽的4个种组的物种丰富度。
Fig. 3 The altitudinal patterns of richness and relative richness for four quarters of species range size. The plant species richness of four quarters of the data in analysis, ranked following an increasing species range.
图5 种域分组后分布宽度的海拔梯度(基于中点法) (a) 分布宽度 Width of species range: (●) ≤600 m, (○) 601-1,200 m, (▼) 1,201-2,000 m; (b) 分布宽度Width of species range: (●) ≤200 m, (○) 201-500 m, (▼) 501-1,000 m , (△) 1,001-1,500 m, (■) 1,501-2,000 m
Fig. 5 Altitudinal patterns of mean range with Rohde’s midpoint method, for two range-classified regimes.
[1] | Bhattarai KR, Vetaas OR (2006) Can Rapoport’s rule explain tree species richness along the Himalayan elevation gradient, Nepal? Diversity and Distributions, 12, 373-378. |
[2] | Chen WL (陈伟烈), Zhang XQ (张喜群), Liang SJ (梁松筠), Jin YX (金义兴), Yang QX (杨启修) (1994) Plant and Compound Agricultural Ecosystem in the Three Gorges Reservoir Area (三峡库区的植物与复合农业生态系统). Science Press, Beijing. (in Chinese) |
[3] | Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595. |
[4] |
Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15, 70-76.
URL PMID |
[5] | Feng JM (冯建孟), Wang XP (王襄平), Fang JY (方精云) (2006) Altitudinal pattern of species richness and test of the Rapoport’s rules in the Drung River area, southwest China. Acta Scientiarum Naturalium Universitatis Pekinensis (北京大学学报, 自然科学版), 42, 515-520. (in Chinese with English abstract) |
[6] |
Gaston KJ, Blackburn TM, Spicer JI (1998) Rapoport’s rule: time for an epitaph? Trends in Ecology and Evolution, 13, 70-74.
DOI URL PMID |
[7] | Gaston KJ, Chown SL (1999) Why Rapoport’s rule does not generalize? Oikos, 84, 309-312. |
[8] | Grytnes JA, Beaman JH, Romdal TS, Rahbek C (2008) The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu, Borneo. Journal of Biogeography, 35, 2138-2147. |
[9] | Housdorf B (2006) Latitudinal and altitudinal diversity patterns and Rapoport effects in north-west European land snails and their causes. Biological Journal of the Linnean Society, 87, 309-323. |
[10] |
Jetz W, Rahbek C (2002) Geographic range size and deter- minants of avian species richness. Science, 297, 1548-1551.
DOI URL PMID |
[11] | Letcher AJ, Harvey PH (1994) Variation in geographical range size among mammals of the Palearctic. The American Naturalist, 144, 30-42. |
[12] | Pagel MD, May RM, Collie AR (1991) Ecological aspects of the geographical distribution and diversity of mammalian species. The American Naturalist, 137, 791-815. |
[13] | Patterson BD, Stotz DF, Solari S, Fitzpatrick JW, Pacheco V (1998) Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography, 25, 593-607. |
[14] | Price TD, Helbig AJ, Richman AD (1997) Evolution of breeding distribution in the old world leaf warblers (genus Phylloscopus). Evolution, 51, 553-561. |
[15] |
Rahbek C (1997) The relationship among area, elevation, and regional species richness in Neotropical birds. The American Naturalist, 149, 875-902.
DOI URL PMID |
[16] | Rapoport EH (1975) Areografía: estrategias geográficas de las especies. Fondo de Cultura Económica, México. |
[17] | Rapoport EH (1982) Areography: Geographical Strategies of Species. Pergamon Press, Oxford. |
[18] | Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514-527. |
[19] | Rohde K, Heap M, Heap D (1993) Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142, 1-16. |
[20] | Ruggiero A, Lawton JH (1998) Are there latitudinal and altitudinal Rapoport effects in the geographic ranges of Andean passerine birds? Biological Journal of the Linnean Society, 63, 283-304. |
[21] | Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Global Ecology and Biogeography, 16, 401-414. |
[22] | Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography, 25, 25-32. |
[23] | Shen ZH (沈泽昊), Hu HF (胡会峰), Zhou N (周宁), Fang JY (方精云) (2004) Altitudinal patterns of plant species diversity on the southern slope of Mt. Shennongjia, Hubei, China. Biodiversity Science (生物多样性), 12, 99-107. (in Chinese with English abstract) |
[24] | Shen ZH (沈泽昊), Lu QY (卢绮妍) (2009) The Rapoport’s rule for the geographic patterns of species range size. Biodiversity Science (生物多样性), 17, 560-567. (in Chinese with English abstract) |
[25] | Shen ZH (沈泽昊), Zhao ZE (赵子恩) (2005) Arenarta shennongjiaensis, a new species of the Caryophyllaceae from Hubei, China. Acta Phytotaxonomica Sinica (植物分类学报), 43, 73-75. (in Chinese with English abstract) |
[26] | Stevens GC (1989) The latitudinal gradients in geographical range: how so many species co-exist in the tropics. The American Naturalist, 133, 240-256. |
[27] |
Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140, 893-911.
DOI URL PMID |
[28] | Stotz DF, Fitzpatrick JW, Parker III TA, Moskovitz JK (1996) Neotropical Birds: Ecology and Conservation. The University of Chicago Press, Chicago. |
[29] | Tian ZQ (田自强) (2002) Vegetation of Shennongjia Mountains Region and the Compilation of A 1:200,000 Vegetation Map (神农架的植被及其1:200,000植被图的编制). Ph.D dissertation of Institute of Botany of the Chinese Academy of Sciences, Beijing. (in Chinese with English summary) |
[30] | Vetaas O, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301. |
[31] | Wuhan Institute of Botany, Chinese Academy of Sciences (中国科学院武汉植物研究所) (1980) Plants in Shennongjia (神农架植物). Hubei People’s Publishing House, Wuhan. (in Chinese) |
[32] | Zapata FA, Gaston KJ, Chown SL (2003) Mid-domain models of species richness gradients: assumptions, methods and evidence. Journal of Animal Ecology, 72, 677-690. |
[33] | Zhao CM (赵常明) (2002) Vegetation of Shennongjia Mountains Region Its Plant Species Diversity and Vertical Distribution Pattern (神农架植被及其生物多样性与垂直分布格局). Ph.D dissertation, Institute of Botany of the Chinese Academy of Sciences, Beijing. (in Chinese with English summary) |
[34] | Zhao CM, Chen WL, Tian ZQ, Xie ZQ (2005) Altitudinal pattern of plant species diversity in Shennongjia Mountains, Central China. Journal of Integrative Plant Biology, 47, 1431-1449. |
[35] | Zheng Z (郑重) (1993) Hubei Plants Complete (湖北植物大全). Wuhan University Press, Wuhan. (in Chinese) |
[36] | Zhu ZQ (朱兆泉), Song CS (宋朝枢) (1999) Scientific Survey of Shennongjia Nature Reserve (神农架自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[1] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[2] | 孟敬慈, 王国栋, 曹光兰, 胡楠林, 赵美玲, 赵延彤, 薛振山, 刘波, 朴文华, 姜明. 中国芦苇沼泽植物物种丰富度分布格局及其驱动因素[J]. 生物多样性, 2024, 32(2): 23194-. |
[3] | 王丽媛, 胡慧建, 姜杰, 胡一鸣. 南岭哺乳类和鸟类物种丰富度空间分布格局及其影响因子[J]. 生物多样性, 2024, 32(1): 23026-. |
[4] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[5] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[6] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[7] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[8] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[9] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
[10] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
[11] | 郭英荣, 兰文军, 邹思成, 袁荣斌, 董晓雨, 曹吉锐, 杨清培, 宋庆妮. 江西武夷山国家级自然保护区林下鸟类和兽类资源的红外相机监测[J]. 生物多样性, 2021, 29(6): 811-818. |
[12] | 王爱霞, 马婧婧, 龚会蝶, 范国安, 王茂, 赵红梅, 程军回. 北疆一年生早春短命植物物种丰富度分布格局及其影响因素[J]. 生物多样性, 2021, 29(6): 735-745. |
[13] | 郑进凤, 唐蓉, 贺霜, 陈月红, 伍素, 张凯, 徐雨, 邹晓. 贵州花溪大学城破碎化林地鸟类多样性与嵌套分布格局[J]. 生物多样性, 2021, 29(5): 661-667. |
[14] | 黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣. 生态系统多功能性的指标选择与驱动因子: 研究现状与展望[J]. 生物多样性, 2021, 29(12): 1673-1686. |
[15] | 房丽君, 张宇军, 邢小宇. 秦岭国家植物园蝴蝶群落结构与多样性[J]. 生物多样性, 2020, 28(8): 965-972. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn