生物多样性

• • 上一篇    下一篇

利用空气环境DNA监测西双版纳20公顷森林动态样地陆生脊椎动物多样性

李云翱1,2, 张文富1, 赵桂刚3,4, 杨春燕3,4, 陈向清6, 袁盛东1,5, 曹敏1, 蔡望1*, 杨洁1,5   

  1. 1. 中国科学院西双版纳热带植物园云南省森林生态系统稳定性与全球变化响应重点实验室,云南勐腊 666303; 2. 云南大学生态与环境学院,昆明 650500; 3. 中国科学院昆明动物研究所生物多样性基因组中心,昆明 650201;4. 云南省西南及跨境生物多样性数据信息重点实验室,昆明 650201;5. 云南西双版纳森林生态系统国家野外科学观测研究站, 云南勐腊 666303;6. 云南西双版纳国家级自然保护区勐腊管护所,云南西双版纳 666300
  • 收稿日期:2024-07-15 修回日期:2025-04-11 接受日期:2025-06-06
  • 通讯作者: 蔡望

Using airborne eDNA to monitor terrestrial animal diversity in a 20-ha forest dynamics plot in Xishuangbanna, Yunnan, China

Yunao Li1,2, Wenfu Zhang1, Guigang Zhao3,4, Chunyan Yang3,4, Xiangqing Chen6, Shengdong Yuan1,5, Min Cao1, Wang Cai1*, Jie Yang1,5   

  1. 1 Yunnan Key Laboratory of Forest Ecosystem Stability and Global Change, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China 

    2 School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China 

    3 The Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China 

    4 Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China 

    5 National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan 666303, China 

    6 Mengla Institute of Conservation, Xishuangbanna Administration of Nature Reserves, Xishuangbanna, Yunnan 666300, China

  • Received:2024-07-15 Revised:2025-04-11 Accepted:2025-06-06
  • Contact: Wang Cai

摘要: 环境DNA (eDNA)技术为生物多样性保护提供了一种无损伤的监测方法。近年来的研究表明, 从空气中收集eDNA可用于监测森林生态系统中的野生动物。相比其他的eDNA调查方法, 该技术在采样地点选择上具备更高的灵活性, 特别适用于缺乏水体等环境介质的调查区域。因此, 空气环境DNA在森林生态系统生物多样性监测领域具有广阔的应用潜力。本研究旨在评估空气环境DNA在监测热带雨林陆生脊椎动物多样性方面的有效性。研究地点位于中国西双版纳20 ha森林动态监测样地, 研究采用空气环境DNA技术对样地内的陆生脊椎动物多样性展开调查, 并将结果与红外相机监测数据进行对比分析。实验共设置20台空气环境DNA采样器, 在2023年11月的6天内完成了3次采样, 每次采样持续24 h。采集的样本经12SV05引物扩增12S rRNA基因片段, 并在Illumina NovaSeq 6000平台上进行高通量测序。随后对获得的序列数据进行物种注释, 并评估空气环境DNA与红外相机在物种检测效率上的差异。研究结果表明, 3次的空气环境DNA采样实验共检测到66个可注释到鸟类、哺乳类、爬行类和两栖类的可操作性分类单元(operational taxonomic units, OTUs); 放置于相同位点的20台红外相机, 在总计5,682个有效相机日的监测中, 检测到15种哺乳动物和15种鸟类。分析表明, 相较于红外相机, 空气环境DNA在物种多样性检测方面具有更高的效率。此外, 通过评估α多样性增长曲线发现, 当空气环境DNA样本量达到10个时, 多样性曲线趋于平台期; 在当前实验环境下3天内采集10个样本可实现物种多样性的最大化检测。综上所述, 本研究表明空气环境DNA是热带雨林陆生脊椎动物多样性监测的有效工具, 并能在短时间内实现一定的物种覆盖。相较于红外相机, 该方法在快速生物多样性调查方面展现出更大的优势。尽管空气环境DNA技术仍处于发展阶段, 其在特定环境条件下的稳定性及检测精度仍需进一步优化, 但随着技术的进步, 空气环境DNA有望成为跨营养级、多物种生物多样性监测的重要工具, 并为中国大规模标准化的生物多样性监测网络提供科学支撑。

关键词: 环境DNA, 空气eDNA, 宏条形码, 生物多样性, 动物多样性, 森林动态监测样地

Abstract

Aims: Environmental DNA (eDNA) technology provides a non-invasive approach for biodiversity monitoring. Recent studies have demonstrated that airborne eDNA collected from the air can be utilized to monitor wildlife in forest ecosystems. Compared with other eDNA survey methods, airborne eDNA offers greater flexibility in sampling site selection, especially in survey areas lacking environmental media such as water bodies. Therefore, airborne eDNA holds significant potential for biodiversity monitoring in forest ecosystems. This study aims to assess the effectiveness of airborne eDNA in monitoring terrestrial vertebrate diversity in tropical rainforests. 

Methods: The research was conducted in a 20-hectare forest dynamics plot in Xishuangbanna, China. Airborne eDNA technology was employed to survey terrestrial vertebrate diversity, and results were compared with those obtained from infrared camera monitoring data. A total of 20 airborne eDNA samplers were deployed, and three 24-hour sampling sessions were conducted over six days in November 2023. Collected samples were amplified using 12SV05 primers targeting the 12S rRNA gene fragment and sequenced on the Illumina NovaSeq 6000 platform. Sequences data were taxonomically annotated, and species detection efficiency was compared between airborne eDNA and infrared cameras. 

Results: Across the three Airborne eDNA sampling sessions, 66 operational taxonomic units (OTUs) were detected, representing birds, mammals, reptiles, and amphibians. In comparison, 20 infrared cameras placed at the same sites recorded 15 mammal species and 15 bird species over 5,682 camera days. Comparative analyses revealed that airborne eDNA was more effective in detecting species diversity. Additionally, evaluation of the alpha diversity accumulation curve indicated that diversity accumulation curve indicated that the diversity plateaued when 10 airborne eDNA samples were collected. Suggesting that within the current experimental conditions, 10 samples collected over three days are sufficient for maximizing species detection. 

Conclusion: This study demonstrates that airborne eDNA serves as an effective tool for monitoring terrestrial vertebrate diversity in tropical rainforests, enabling rapid and comprehensive biodiversity assessments. Compared to infrared cameras, airborne eDNA shows distinct advantages in rapid species detection. Although the technology is still under development and its stability and accuracy under specific environmental conditions require further improvement, ongoing advancements are likely to establish airborne eDNA as a critical tool for cross-trophic and multi-species biodiversity monitoring. It holds strong potential to support large-scale, standardized biodiversity monitoring networks in China.

Key words: environmental DNA, airborne eDNA, DNA metabarcoding, biodiversity, animal diversity, forest dynamics plot