生物多样性 ›› 2021, Vol. 29 ›› Issue (11): 1470-1480. DOI: 10.17520/biods.2021146
张军1,2, 彭焕文2,3,*(), 夏富才1,*(
), 王伟2,3
收稿日期:
2021-04-18
接受日期:
2021-07-03
出版日期:
2021-11-20
发布日期:
2021-07-27
通讯作者:
彭焕文,夏富才
作者简介:
E-mail: xfc0707@163.com基金资助:
Jun Zhang1,2, Huanwen Peng2,3,*(), Fucai Xia1,*(
), Wei Wang2,3
Received:
2021-04-18
Accepted:
2021-07-03
Online:
2021-11-20
Published:
2021-07-27
Contact:
Huanwen Peng,Fucai Xia
摘要:
多倍化是植物快速适应极端环境胁迫的一种重要机制。青藏高原高山区和泛北极地区具有相似的极端低温环境, 且两地的植物曾有密切的交流和联系。然而, 多倍体物种对两地植物区系生物多样性的贡献是否相同仍不清楚。我们系统地收集两地已有染色体数目和倍性报道的种子植物物种名录, 共计1,770种, 其中青藏高原高山区774种, 泛北极地区996种; 同时也相应地收集了每个物种的生活型信息。分析显示青藏高原高山区多倍体植物的比例为20.9%, 泛北极地区多倍体植物比例为61.5%; 青藏高原高山区一年生草本、多年生草本和木本植物中多倍体的比例分别为20.7%、21.6%和12.8%, 泛北极地区一年生草本、多年生草本和木本植物中多倍体的比例分别为60.2%、65.5%和38.3%。这些结果表明泛北极地区比青藏高原高山区具有较高比例的多倍体物种。青藏高原高山植物区系在渐新世‒中新世之交开始兴起, 此时高原已达到一定高度, 而后的高寒环境相对稳定, 致使多倍体物种相对较少; 而泛北极地区植物区系在3-4 Ma兴起, 此后经历了冰期‒间冰期、海平面波动等反复剧烈的气候环境变化, 可能促进了大量的多倍化事件发生。本研究通过比较青藏高原高山区和泛北极地区植物多倍体物种的比例, 揭示了两地多倍体比例差异的可能原因, 将提高对多倍体适应极端环境的理解。
张军, 彭焕文, 夏富才, 王伟 (2021) 青藏高原高山区和泛北极地区种子植物多倍体比较. 生物多样性, 29, 1470-1480. DOI: 10.17520/biods.2021146.
Jun Zhang, Huanwen Peng, Fucai Xia, Wei Wang (2021) A comparison of seed plants’ polyploids between the Qinghai-Tibet Plateau alpine and the Pan-Arctic regions. Biodiversity Science, 29, 1470-1480. DOI: 10.17520/biods.2021146.
图1 青藏高原(QTP)和泛北极地区范围。青藏高原范围依据张镱锂等(2002)和Zhang等(2016), 泛北极地区范围依据Elven等(2011)。
Fig. 1 Ranges of the Qinghai-Tibet Plateau (QTP) and the Pan-Arctic regions. The range of the QTP refers to Zhang YL et al (2002) and Zhang DC et al (2016); the range of the Pan-Arctic region refers to Elven et al (2011).
生活型 Life form | 青藏高原高山区物种数 No. of species in the QTP alpine region | 泛北极地区物种数 No. of species in the Pan-Arctic region | ||
---|---|---|---|---|
多倍体 Polyploid | 二倍体 Diploid | 多倍体 Polyploid | 二倍体 Diploid | |
木本植物 Woody plant | 6 (12.8%) | 41 (87.2%) | 49 (38.3%) | 79 (61.7%) |
草本植物 Herb | 156 (21.5%) | 571 (78.5%) | 564 (65.0%) | 304 (35.0%) |
一年生草本 Annual herb | 18 (20.7%) | 69 (79.3%) | 53 (60.2%) | 35 (39.8%) |
多年生草本 Perennial herb | 138 (21.6%) | 502 (78.4%) | 511 (65.5%) | 269 (34.5%) |
总数 Total | 162 (20.9%) | 612 (79.1%) | 613 (61.5%) | 383 (38.5%) |
表1 青藏高原高山区和泛北极地区种子植物倍性、生活型信息统计。百分比表示两地不同生活型及总体中的多倍体、二倍体占比。
Table 1 Statistics of the ploidy and life form of seed plants in the Qinghai-Tibet Plateau (QTP) alpine and Pan-Arctic regions. Percentages indicate polyploid and diploid proportions of different life forms and the total in the two regions.
生活型 Life form | 青藏高原高山区物种数 No. of species in the QTP alpine region | 泛北极地区物种数 No. of species in the Pan-Arctic region | ||
---|---|---|---|---|
多倍体 Polyploid | 二倍体 Diploid | 多倍体 Polyploid | 二倍体 Diploid | |
木本植物 Woody plant | 6 (12.8%) | 41 (87.2%) | 49 (38.3%) | 79 (61.7%) |
草本植物 Herb | 156 (21.5%) | 571 (78.5%) | 564 (65.0%) | 304 (35.0%) |
一年生草本 Annual herb | 18 (20.7%) | 69 (79.3%) | 53 (60.2%) | 35 (39.8%) |
多年生草本 Perennial herb | 138 (21.6%) | 502 (78.4%) | 511 (65.5%) | 269 (34.5%) |
总数 Total | 162 (20.9%) | 612 (79.1%) | 613 (61.5%) | 383 (38.5%) |
图2 青藏高原高山区和泛北极地区植物多倍体组成差异的可能因素。QTP: 青藏高原; PA: 泛北极地区。温度曲线修改自Westerhold等(2020)。青藏高原高山区和泛北极地区植物区系的兴起分别依据Ding等(2020)和Matthews和 Ovenden (1990)的研究。虚线表示青藏高原高山植物区系在早渐新世开始发生, 实线表示植物区系快速兴起。Oligocene: 渐新世; Miocene: 中新世; Pli.: 上新世; Ple.: 更新世。
Fig. 2 Possible factors resulting in polyploids in the Qinghai- Tibet Plateau (QTP) alpine and Pan-Arctic (PA) regions. The temperature curve was modified from Westerhold et al (2020). Rises of the QTP alpine and PA floras are based on Ding et al (2020) and Matthews & Ovenden (1990), respectively. The dotted line indicates that the QTP alpine flora started to develop in the early Oligocene, whereas the solid lines indicate the rapid rise of the flora. Pli., Pliocene; Ple., Pleistocene.
[1] |
Bennett MD (2004) Perspectives on polyploidy in plants-Ancient and neo. Biological Journal of the Linnean Society, 82, 411-423.
DOI URL |
[2] | Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Rugenstein JKC (2019) Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 363, eaaq1436. |
[3] |
Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82, 521-536.
DOI URL |
[4] |
Cai LM, Xi ZX, Amorim AM, Sugumaran M, Rest JS, Liu L, Davis CC (2019) Widespread ancient whole-genome duplications in Malpighiales coincide with Eocene global climatic upheaval. New Phytologist, 221, 565-576.
DOI URL |
[5] |
Chen TY, Lou AR (2019) Phylogeography and paleodistribution models of a widespread birch (Betula platyphylla Suk.) across East Asia: Multiple refugia, multidirectional expansion, and heterogeneous genetic pattern. Ecology and Evolution, 9, 7792-7807.
DOI URL |
[6] |
Comes HP, Kadereit JW (2003) Spatial and temporal patterns in the evolution of the flora of the European Alpine System. Taxon, 52, 451-462.
DOI URL |
[7] |
Compagnoni A, Levin S, Childs DZ, Harpole S, Paniw M, Römer G, Burns JH, Che-Castaldo J, Rüger N, Kunstler G, Bennett JM, Archer CR, Jones OR, Salguero-Gómez R, Knight TM (2021) Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time. Nature Communications, 12, 1824.
DOI PMID |
[8] | De Storme N, Geelen D (2014) The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant, Cell & Environment, 37, 1-18. |
[9] | Deng T, Wu FX, Wang SQ, Su T, Zhou ZK (2019) Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau. Chinese Science Bulletin, 64, 2894-2906. (in Chinese with English abstract) |
[ 邓涛, 吴飞翔, 王世骐, 苏涛, 周浙昆 (2019) 古近纪/新近纪之交青藏高原陆地生态系统的重大转折. 科学通报, 64, 2894-2906.] | |
[10] |
Despres L, Loriot S, Gaudeul M (2002) Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Molecular Ecology, 11, 2337-2347.
DOI URL |
[11] |
Ding L, Spicer RA, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer TEV, Yue Y, Shukla A, Srivastava G, Khan MA, Bera S, Mehrotra R (2017) Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45, 215-218.
DOI URL |
[12] |
Ding WN, Ree RH, Spicer RA, Xing YW (2020) Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science, 369, 578-581.
DOI URL |
[13] |
Drummond CS, Eastwood RJ, Miotto STS, Hughes CE (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): Testing for key innovation with incomplete taxon sampling. Systematic Biology, 61, 443-460.
DOI URL |
[14] |
Ebersbach J, Muellner-Riehl AN, Michalak I, Tkach N, Hoffmann MH, Röser M, Sun H, Favre A (2017) In and out of the Qinghai-Tibet Plateau: Divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. Journal of Biogeography, 44, 900-910.
DOI URL |
[15] | Elven R, Murray DF, Razzhivin VY, Yurtsev BA (2011) Annotated Checklist of the Panarctic Flora (PAF), Vascular Plants. http://Panarcticflora.org/. (accessed on 2020-10-20) |
[16] | Fang XM, Dupont-Nivet G, Wang CS, Song CH, Meng QQ, Zhang WL, Nie JS, Zhang T, Mao ZQ, Chen Y (2020) Revised chronology of central Tibet uplift (Lunpola Basin). Science Advances, 6, eaba7298. |
[17] | Farnsworth A, Lunt DJ, Robinson SA, Valdes PJ, Roberts WHG, Clift PD, Markwick P, Su T, Wrobel N, Bragg F, Kelland SJ, Pancost RD (2019) Past East Asian monsoon evolution controlled by paleogeography, not CO2. Science Advances, 5, eaax1697. |
[18] |
Favre A, Michalak I, Chen CH, Wang JC, Pringle JS, Matuszak S, Sun H, Yuan YM, Struwe L, Muellner-Riehl AN (2016) Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). Journal of Biogeography, 43, 1967-1978.
DOI URL |
[19] | Gamberg M (2020) Threats to arctic ecosystems. In: Encyclopedia of the World’s Biomes (eds Goldstein MI, DellaSala DA), pp. 532-538. Elsevier, Oxford. |
[20] | Gao QZ, Guo YQ, Xu HM, Ganjurjav H, Li Y, Wan YF, Qin XB, Ma X, Liu S (2016) Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 554/555, 34-41. |
[21] | Goldblatt P (1980) Polyploidy in angiosperms:Monocotyledons. In: Polyploidy: Biological Relevance (ed. Lewis WH), pp. 219-239. Springer, New York. |
[22] | Grant JK, De DC, Biochimie SBD (1963) Methods of Separation of Subcellular Structural Components. Cambridge University Press, Cambridge. |
[23] |
Hoffmann MH, von Hagen KB, Hörandl E, Röser M, Tkach NV (2010) Sources of the arctic flora: Origins of arctic species in Ranunculus and related genera. International Journal of Plant Sciences, 171, 90-106.
DOI URL |
[24] |
Hou Y, Nowak MD, Mirré V, Bjorå CS, Brochmann C, Popp M (2016) RAD-seq data point to a northern origin of the arctic-alpine genus Cassiope (Ericaceae). Molecular Phylogenetics and Evolution, 95, 152-160.
DOI URL |
[25] | Khatoon S, Ali SI (1993) Chromosome Atlas of the Angiosperms of Pakistan. BCC & T Press, Karachi. |
[26] | Körner C (2003) The alpine life zone. In:Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed.ed. Körner C), pp. 9-20. Springer-Verlag, New York. |
[27] |
Lasabuda APE, Johansen NS, Laberg JS, Faleide JI, Senger K, Rydningen TA, Patton H, Knutsen S-M, Hanssen A (2021) Cenozoic uplift and erosion of the Norwegian Barents Shelf -A review. Earth-Science Reviews, 217, 103609.
DOI URL |
[28] | Levin DA (2002) The Role of Chromosomal Change in Plant Evolution (Oxford Series in Ecology and Evolution). Oxford University Press, New York. |
[29] |
Li GD, Kim C, Zha HG, Zhou Z, Nie ZL, Sun H (2014) Molecular phylogeny and biogeography of the arctic-alpine genus Lagotis (Plantaginaceae). Taxon, 63, 103-115.
DOI URL |
[30] | Li SF, Valdes PJ, Farnsworth A, Davies-Barnard T, Su T, Lunt DJ, Spicer RA, Liu J, Deng WYD, Huang J, Tang H, Ridgwell A, Chen LL, Zhou ZK (2021) Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Science Advances, 7, eabc7741. |
[31] |
Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[32] | Ma PF, Wang LC, Wang CS, Wu XH, Wei YS (2015) Organic-matter accumulation of the lacustrine Lunpola oil shale, central Tibetan Plateau: Controlled by the paleoclimate, provenance, and drainage system. International Journal of Coal Geology, 147/148, 58-70. |
[33] |
Masterson J (1994) Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science, 264, 421- 424.
PMID |
[34] | Matthews JV, Ovenden LE (1990) Late Tertiary plant macrofossils from localities in arctic/subarctic North America: A review of the data. ARCTIC, 43, 364-392. |
[35] |
Michl T, Huck S, Schmitt T, Liebrich A, Haase P, Büdel B (2010) The molecular population structure of the tall forb Cicerbita alpina (Asteraceae) supports the idea of cryptic glacial refugia in central Europe. Botanical Journal of the Linnean Society, 164,142-154.
DOI URL |
[36] |
Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science, 310, 1293-1298.
DOI URL |
[37] | Murray DF (1995) Causes of arctic plant diversity:Origin and evolution. In: Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin FS, Korner C), pp. 21-32. Springer, Heidelberg, Germany. |
[38] |
Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC (2015) Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 5, 887-891.
DOI |
[39] | Nie ZL, Wen J, Gu ZJ, Boufford DE, Sun H (2005) Polyploidy in the flora of the Hengduan Mountains hotspot, Southwestern China. Annals of the Missouri Botanical Garden, 92, 275- 306. |
[40] | Pan BT, Gao HS, Li BY, Li JJ (2004) Step-like landforms and uplift of the Qinghai-Xizang Plateau. Quaternary Sciences, 24, 50-57, 133. (in Chinese with English abstract) |
[ 潘保田, 高红山, 李炳元, 李吉均 (2004) 青藏高原层状地貌与高原隆升. 第四纪研究, 24, 50-57, 133.] | |
[41] | Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I (2019) The global biogeography of polyploid plants. Nature Ecology & Evolution, 3, 265-273. |
[42] |
Roquet C, Boucher FC, Thuiller W, Lavergne S (2013) Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. Journal of Biogeography, 40, 1874-1886.
DOI URL |
[43] |
Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85-96.
DOI URL |
[44] | Shi Z, Bai DZ, Lei JP, Li MH, Xiao WF (2011) Advance on physioecological adaptation of alpine plants to mountainous environment. Acta Botanica Boreali-Occidentalia Sinica, 31, 1711-1718. (in Chinese with English abstract) |
[ 施征, 白登忠, 雷静品, 李迈和, 肖文发 (2011) 高山植物对其环境的生理生态适应性研究进展. 西北植物学报, 31, 1711- 1718.] | |
[45] |
Souto CP, Kitzberger T, Arbetman MP, Premoli AC (2015) How do cold-sensitive species endure ice ages? Phylogeographic and paleodistribution models of postglacial range expansion of the mesothermic drought-tolerant conifer Austrocedrus chilensis. New Phytologist, 208, 960-972.
DOI URL |
[46] | Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu FX, Shi GL, Spicer TEV, Zhou ZK (2021) Why ‘the uplift of the Tibetan Plateau’ is a myth. National Science Review, 8, nwaa091. |
[47] |
Stebbins GL (1938) Cytological characteristics associated with the different growth habits in the dicotyledons. American Journal of Botany, 25, 189-198.
DOI URL |
[48] | Stebbins GL (1950) Variation and Evolution in Plants. Columbia University Press, New York. |
[49] | Stebbins GL (1984) Polyploidy and the distribution of the arctic-alpine flora: New evidence and a new approach. Botanica Helvetica, 94, 1-13. |
[50] | Su T, Farnsworth A, Spicer RA, Huang J, Wu FX, Liu J, Li SF, Xing YW, Huang YJ, Deng WYD, Tang H, Xu CL, Zhao F, Srivastava G, Valdes PJ, Deng T, Zhou ZK (2019) No high Tibetan Plateau until the Neogene. Science Advances, 5, eaav2189. |
[51] |
Su T, Spicer RA, Li SH, Xu H, Huang J, Sherlock S, Huang YJ, Li SF, Wang L, Jia LB, Deng WYD, Liu J, Deng CL, Zhang ST, Valdes PJ, Zhou ZK (2019) Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. National Science Review, 6, 495-504.
DOI URL |
[52] |
Sun JM, Xu QH, Liu WM, Zhang ZQ, Xue L, Zhao P (2014) Palynological evidence for the latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 21-30.
DOI URL |
[53] |
Sun YS, Wang AL, Wan DS, Wang Q, Liu JQ (2012) Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. Molecular Phylogenetics and Evolution, 63, 150-158.
DOI URL |
[54] | Tkach NV, Hoffmann MH, Röser M, von Hagen KB (2008) Temporal patterns of evolution in the Arctic explored in Artemisia L. (Asteraceae) lineages of different age. Plant Ecology & Diversity, 1, 161-169. |
[55] | Tsuneo F, Katsuhiko K, Hong DY, Zhou SL, Takuko S (1998) A karyomorphological comparison of four Saxifraga species collected in the western part of Sichuan Province, China. Chromosome Science, 2, 103-109. |
[56] |
Van de Peer Y, Ashman TL, Soltis PS, Soltis DE (2021) Polyploidy: An evolutionary and ecological force in stressful times. The Plant Cell, 33, 11-26.
DOI URL |
[57] | Wang EQ (2013) Evolution of the Tibetan Plateau: As constrained by major tectonic-thermo events and a discussion on their origin. Chinese Journal of Geology, 48, 334-353. (in Chinese with English abstract) |
[ 王二七 (2013) 青藏高原大地构造演化--主要构造-热事件的制约及其成因探讨. 地质科学, 48, 334-353.] | |
[58] | Wang JJ, Peng ZB, Sun H, Nie ZL, Meng Y (2017) Cytogeographic patterns of angiosperms flora of the Qinghai- Tibet Plateau and Hengduan Mountains. Biodiversity Science, 25, 218-225. (in Chinese with English abstract) |
[ 王家坚, 彭智邦, 孙航, 聂泽龙, 孟盈 (2017) 青藏高原与横断山被子植物区系演化的细胞地理学特征. 生物多样性, 25, 218-225.]
DOI |
|
[59] |
Wang Q, Liu JQ, Allen GA, Ma YZ, Yue W, Marr KL, Abbott RJ (2016) Arctic plant origins and early formation of circumarctic distributions: A case study of the mountain sorrel, Oxyria digyna. New Phytologist, 209, 343-353.
DOI URL |
[60] |
Wang YF, Sylvester SP, Lu XM, Dawadi B, Sigdel SR, Liang EY, Julio Camarero J (2019) The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance. Forest Ecology and Management, 442, 34-45.
DOI URL |
[61] | Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014) Evolutionary diversifications of plants on the Qinghai- Tibetan Plateau. Frontiers in Genetics, 5, 4. |
[62] |
Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JSK, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T, Hodell DA, Holbourn AE, Kroon D, Lauretano V, Littler K, Lourens LJ, Lyle M, Pälike H, Röhl U, Tian J, Wilkens RH, Wilson PA, Zachos JC (2020) An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369, 1383-1387.
DOI PMID |
[63] |
Woodruff DS, Turner LM (2009) The Indochinese-Sundaic zoogeographic transition: A description and analysis of terrestrial mammal species distributions. Journal of Biogeography, 36, 803-821.
DOI URL |
[64] |
Wu SD, Han BC, Jiao YN (2020) Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Molecular Plant, 13, 59-71.
DOI URL |
[65] | Yang Y, Sun H (2006) Advances in the functional ecology of alpine and arctic plants. Acta Botanica Yunnanica, 28, 43-53. (in Chinese with English abstract) |
[ 杨扬, 孙航 (2006) 高山和极地植物功能生态学研究进展. 云南植物研究, 28, 43-53.] | |
[66] | Yuan J, Yang ZY, Deng CL, Krijgsman W, Hu XM, Li SH, Shen ZS, Qin HF, An W, He HY, Ding L, Guo ZT, Zhu RX (2021) Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. National Science Review, 8, nwaa173. |
[67] |
Zenil-Ferguson R, Ponciano JM, Burleigh JG (2017) Testing the association of phenotypes with polyploidy: An example using herbaceous and woody eudicots. Evolution, 71, 1138- 1148.
DOI PMID |
[68] |
Zhang DC, Ye JX, Sun H (2016) Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. Journal of Biogeography, 43, 2465-2476.
DOI URL |
[69] |
Zhang JQ, Meng SY, Allen GA, Wen J, Rao GY (2014) Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). Molecular Phylogenetics and Evolution, 77, 147-158.
DOI URL |
[70] | Zhang YL, Li BY, Zheng D (2002) A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21, 1-8. (in Chinese with English abstract) |
[ 张镱锂, 李炳元, 郑度 (2002) 论青藏高原范围与面积. 地理研究, 21, 1-8.] |
[1] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[2] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[3] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[4] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[5] | 赵仁生, 许诗嘉, 宋鹏飞, 周翔, 张亚洲, 袁燕. 青藏高原药用植物分布格局及保护优先区[J]. 生物多样性, 2022, 30(4): 21385-. |
[6] | 沈国平, 韩睿, 缪增强, 邢江娃, 李永臻, 王嵘, 朱德锐. 青藏高原4类典型水化学特征湖泊的细菌多样性差异及影响因素[J]. 生物多样性, 2022, 30(4): 21420-. |
[7] | 秦乐, 朱彦鹏, 任月恒, 李博炎, 付梦娣, 李俊生. 青藏高原国家级自然保护区管理能力差异及其对保护成效的影响[J]. 生物多样性, 2022, 30(11): 22419-. |
[8] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[9] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[10] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[11] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[12] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
[13] | 王婷, 夏增强, 舒江平, 张娇, 王美娜, 陈建兵, 王慷林, 向建英, 严岳鸿. 全基因组复制事件的绝对定年揭示莲座蕨属植物的迟滞演化[J]. 生物多样性, 2021, 29(6): 722-734. |
[14] | 张丛林, 褚梦真, 张慧智, 乔海娟, 黄宝荣. 青藏高原国家公园群游憩可持续性管理评估指标体系[J]. 生物多样性, 2021, 29(6): 780-789. |
[15] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn