生物多样性 ›› 2021, Vol. 29 ›› Issue (7): 918-926. DOI: 10.17520/biods.2020438
邹博研1,2, 罗概1,2, 朱博伟1,2, 冉江洪1,2,*(), 房超3
收稿日期:
2020-11-25
接受日期:
2021-03-06
出版日期:
2021-07-20
发布日期:
2021-03-11
通讯作者:
冉江洪
作者简介:
* E-mail: rjhong-01@163.com基金资助:
Boyan Zou1,2, Gai Luo1,2, Bowei Zhu1,2, Jianghong Ran1,2,*(), Chao Fang3
Received:
2020-11-25
Accepted:
2021-03-06
Online:
2021-07-20
Published:
2021-03-11
Contact:
Jianghong Ran
摘要:
物种的空间分布会受到种间相互作用(如捕食关系等)和环境变量等多种因素共同影响。阐明环境变量和种间相互作用对同域物种空间分布关系的影响, 对于理解群落聚集和生物多样性的维持机制至关重要。为了解川西高原常见雉类与捕食者的空间分布关系及其驱动因素, 本研究利用2016-2018年在川西高原84个红外相机位点获得的682张目标物种的独立照片, 采用条件型双物种占域模型(conditional two-species occupancy model)在相机位点尺度评估了在川西高原广泛分布的黄喉雉鹑(Tetraophasis szechenyii)、血雉(Ithaginis cruentus)和白马鸡(Crossoptilon crossoptilon)与其捕食者赤狐(Vulpes vulpes)的空间分布关系。结果显示: (1)在物种作用和环境变量的共同影响下, 赤狐和血雉(物种相互作用因子, species interaction factor, SIF = 1.31 ± 0.14)与赤狐和黄喉雉鹑(SIF = 1.42 ± 0.41)在研究区域内的空间分布趋于重合, 赤狐和血雉的空间关系随距河流距离的增加呈现先重合后趋于分离的趋势, 而赤狐和黄喉雉鹑的空间关系随距河流距离的增加呈现出由重合转为分离的趋势。赤狐与白马鸡在空间分布上相互独立(SIF = 1), 白马鸡的空间分布主要受环境因子影响, 而赤狐对其没有影响。(2) 3种雉类的探测率受物种作用的影响, 在相机位点尺度上赤狐的存在减少了3种雉类的探测率(pB > rB)。本研究为物种空间分布关系的研究提供了新的案例, 也为理解物种共存机制和生物多样性保护提供了科学依据。
邹博研, 罗概, 朱博伟, 冉江洪, 房超 (2021) 川西高原三种雉类与其捕食者赤狐的空间关系. 生物多样性, 29, 918-926. DOI: 10.17520/biods.2020438.
Boyan Zou, Gai Luo, Bowei Zhu, Jianghong Ran, Chao Fang (2021) The spatial distribution relationship between three pheasant species and mutual predator, the red fox (Vulpes vulpes), on the Western Sichuan Plateau. Biodiversity Science, 29, 918-926. DOI: 10.17520/biods.2020438.
参数 Parameters | 描述 Description |
---|---|
psiA | 物种A对位点使用的概率 Probability of site use for species A |
psiBA | 当物种A存在时, 物种B对位点使用的概率 Probability of site use for species B, given species A is present |
psiBa | 当物种A不存在时, 物种B对位点使用的概率 Probability of site use for species B, given species A is absent |
pA | 当物种B不存在时, 物种A的探测概率 Probability of detection for species A, given species B is absent |
pB | 当物种A不存在时, 物种B的探测概率 Probability of detection for species B, given species A is absent |
rA | 当两物种都存在时, 物种A的探测概率 Probability of detection for species A, given both species are present |
rBA | 当两物种都存在且物种A被探测到时, 物种B的探测概率 Probability of detection for species B, given both species are present and species A is detected |
rBa | 当两物种都存在且物种A未被探测到时, 物种B的探测概率 Probability of detection for species B, given both species are present and species A is not detected |
表1 条件型双物种占域模型中的参数描述
Table 1 The description of parameters in conditional two-species occupancy model
参数 Parameters | 描述 Description |
---|---|
psiA | 物种A对位点使用的概率 Probability of site use for species A |
psiBA | 当物种A存在时, 物种B对位点使用的概率 Probability of site use for species B, given species A is present |
psiBa | 当物种A不存在时, 物种B对位点使用的概率 Probability of site use for species B, given species A is absent |
pA | 当物种B不存在时, 物种A的探测概率 Probability of detection for species A, given species B is absent |
pB | 当物种A不存在时, 物种B的探测概率 Probability of detection for species B, given species A is absent |
rA | 当两物种都存在时, 物种A的探测概率 Probability of detection for species A, given both species are present |
rBA | 当两物种都存在且物种A被探测到时, 物种B的探测概率 Probability of detection for species B, given both species are present and species A is detected |
rBa | 当两物种都存在且物种A未被探测到时, 物种B的探测概率 Probability of detection for species B, given both species are present and species A is not detected |
模型 Models | 参数数量 Number of parameters | AIC | ΔAIC | AIC Wt | ||
---|---|---|---|---|---|---|
赤狐 + 白马鸡 Vulpes vulpes + Crossoptilon crossoptilon | ||||||
psiA, psiB (ELE + DTR); pA, pB, rB | 7 | 1,120.73 | 0 | 0.9731 | ||
psiA, psiB; pA, pB, rB | 5 | 1,128.81 | 8.08 | 0.0171 | ||
psiA, psiBA, psiBa; pA, pB, rB | 6 | 1,130.8 | 10.07 | 0.0063 | ||
psiA, psiB (ELE + DTR); pA, pB | 6 | 1,132.21 | 11.48 | 0.0031 | ||
psiA, psiBA (ELE + DTR), psiBa (ELE + DTR); pA, pB | 9 | 1,137.12 | 16.39 | 0.0003 | ||
psiA, psiB; pA, pB | 4 | 1,141.3 | 20.57 | 0 | ||
psiA, psiBA, psiBa; pA, pB | 5 | 1,142.01 | 21.28 | 0 | ||
psiA, psiBA (ELE + DTR), psiBa (ELE + DTR); pA, pB, rB | 10 | 1,151.45 | 30.72 | 0 | ||
赤狐 + 黄喉雉鹑 Vulpes vulpes + Tetraophasis szechenyii | ||||||
psiA, psiBA (DTW), psiBa (DTW); pA, pB, rB | 8 | 814.35 | 0 | 0.9847 | ||
psiA, psiBA, psiBa; pA, pB, rB | 6 | 823.13 | 8.78 | 0.0122 | ||
psiA, psiB (DTW); pA, pB, rB | 6 | 826.47 | 12.12 | 0.0023 | ||
psiA, psiB; pA, pB, rB | 5 | 829.01 | 14.66 | 0.0006 | ||
psiA, psiBA (DTW), psiBa (DTW); pA, pB | 7 | 833.91 | 19.56 | 0.0001 | ||
psiA, psiB (DTW); pA, pB | 5 | 833.97 | 19.62 | 0.000 | ||
psiA, psiB; pA, pB | 4 | 836.53 | 22.18 | 0 | ||
psiA, psiBA, psiBa; pA, pB | 5 | 837.41 | 23.06 | 0 | ||
赤狐 + 血雉 Vulpes vulpes + Ithaginis cruentus | ||||||
psiA, psiBA (DTW), psiBa (DTW); pA, pB, rB | 8 | 935.01 | 0 | 0.773 | ||
psiA, psiB (DTW); pA, pB, rB | 6 | 937.74 | 2.73 | 0.1974 | ||
psiA, psiBA, psiBa; pA, pB, rBa | 6 | 942.00 | 6.99 | 0.0235 | ||
psiA, psiB; pA, pB, rBa | 5 | 944.68 | 9.67 | 0.0061 | ||
psiA, psiB (DTW); pA, pB | 5 | 968.95 | 33.94 | 0 | ||
psiA, psiBA (DTW), psiBa (DTW); pA, pB | 7 | 972.72 | 97.71 | 0 | ||
psiA, psiB; pA, pB | 4 | 975.74 | 40.73 | 0 | ||
psiA, psiBA, psiBa; pA, pB | 5 | 977.74 | 42.73 | 0 |
表2 赤狐与3种雉类的条件型双物种占域模型选择结果
Table 2 Selection results of conditional two-species occupancy models for red fox and three pheasant species
模型 Models | 参数数量 Number of parameters | AIC | ΔAIC | AIC Wt | ||
---|---|---|---|---|---|---|
赤狐 + 白马鸡 Vulpes vulpes + Crossoptilon crossoptilon | ||||||
psiA, psiB (ELE + DTR); pA, pB, rB | 7 | 1,120.73 | 0 | 0.9731 | ||
psiA, psiB; pA, pB, rB | 5 | 1,128.81 | 8.08 | 0.0171 | ||
psiA, psiBA, psiBa; pA, pB, rB | 6 | 1,130.8 | 10.07 | 0.0063 | ||
psiA, psiB (ELE + DTR); pA, pB | 6 | 1,132.21 | 11.48 | 0.0031 | ||
psiA, psiBA (ELE + DTR), psiBa (ELE + DTR); pA, pB | 9 | 1,137.12 | 16.39 | 0.0003 | ||
psiA, psiB; pA, pB | 4 | 1,141.3 | 20.57 | 0 | ||
psiA, psiBA, psiBa; pA, pB | 5 | 1,142.01 | 21.28 | 0 | ||
psiA, psiBA (ELE + DTR), psiBa (ELE + DTR); pA, pB, rB | 10 | 1,151.45 | 30.72 | 0 | ||
赤狐 + 黄喉雉鹑 Vulpes vulpes + Tetraophasis szechenyii | ||||||
psiA, psiBA (DTW), psiBa (DTW); pA, pB, rB | 8 | 814.35 | 0 | 0.9847 | ||
psiA, psiBA, psiBa; pA, pB, rB | 6 | 823.13 | 8.78 | 0.0122 | ||
psiA, psiB (DTW); pA, pB, rB | 6 | 826.47 | 12.12 | 0.0023 | ||
psiA, psiB; pA, pB, rB | 5 | 829.01 | 14.66 | 0.0006 | ||
psiA, psiBA (DTW), psiBa (DTW); pA, pB | 7 | 833.91 | 19.56 | 0.0001 | ||
psiA, psiB (DTW); pA, pB | 5 | 833.97 | 19.62 | 0.000 | ||
psiA, psiB; pA, pB | 4 | 836.53 | 22.18 | 0 | ||
psiA, psiBA, psiBa; pA, pB | 5 | 837.41 | 23.06 | 0 | ||
赤狐 + 血雉 Vulpes vulpes + Ithaginis cruentus | ||||||
psiA, psiBA (DTW), psiBa (DTW); pA, pB, rB | 8 | 935.01 | 0 | 0.773 | ||
psiA, psiB (DTW); pA, pB, rB | 6 | 937.74 | 2.73 | 0.1974 | ||
psiA, psiBA, psiBa; pA, pB, rBa | 6 | 942.00 | 6.99 | 0.0235 | ||
psiA, psiB; pA, pB, rBa | 5 | 944.68 | 9.67 | 0.0061 | ||
psiA, psiB (DTW); pA, pB | 5 | 968.95 | 33.94 | 0 | ||
psiA, psiBA (DTW), psiBa (DTW); pA, pB | 7 | 972.72 | 97.71 | 0 | ||
psiA, psiB; pA, pB | 4 | 975.74 | 40.73 | 0 | ||
psiA, psiBA, psiBa; pA, pB | 5 | 977.74 | 42.73 | 0 |
物种对 Species pairs | psiA ± SE | psiBA ± SE | psiBa ± SE | pA ± SE | pB ± SE | rB ± SE | SIF ± SE |
---|---|---|---|---|---|---|---|
赤狐 + 白马鸡 Vulpes vulpes + Crossoptilon crossoptilon | 0.50 ± 0.10 | 0.68 ± 0.20 | 0.68 ± 0.20 | 0.10 ± 0.02 | 0.32 ± 0.03 | 0.14 ± 0.02 | 1.00 |
赤狐 + 黄喉雉鹑 Vulpes vulpes + Tetraophasis szechenyii | 0.56 ± 0.07 | 0.70 ± 0.08 | 0.31 ± 0.38 | 0.09 ± 0.01 | 0.42 ± 0.07 | 0.09 ± 0.02 | 1.42 ± 0.41 |
赤狐 + 血雉 Vulpes vulpes + Ithaginis cruentus | 0.62 ± 0.07 | 0.81 ± 0.30 | 0.29 ± 0.17 | 0.08 ± 0.01 | 0.59 ± 0.05 | 0.11 ± 0.01 | 1.31 ± 0.14 |
表3 赤狐与3种雉类条件型双物种占域模型最优模型的参数估计值(平均值 ± 标准差)
Table 3 Parameters estimates obtained from the optimal conditional two-species occupancy model applied to red fox and three pheasants (mean ± SE)
物种对 Species pairs | psiA ± SE | psiBA ± SE | psiBa ± SE | pA ± SE | pB ± SE | rB ± SE | SIF ± SE |
---|---|---|---|---|---|---|---|
赤狐 + 白马鸡 Vulpes vulpes + Crossoptilon crossoptilon | 0.50 ± 0.10 | 0.68 ± 0.20 | 0.68 ± 0.20 | 0.10 ± 0.02 | 0.32 ± 0.03 | 0.14 ± 0.02 | 1.00 |
赤狐 + 黄喉雉鹑 Vulpes vulpes + Tetraophasis szechenyii | 0.56 ± 0.07 | 0.70 ± 0.08 | 0.31 ± 0.38 | 0.09 ± 0.01 | 0.42 ± 0.07 | 0.09 ± 0.02 | 1.42 ± 0.41 |
赤狐 + 血雉 Vulpes vulpes + Ithaginis cruentus | 0.62 ± 0.07 | 0.81 ± 0.30 | 0.29 ± 0.17 | 0.08 ± 0.01 | 0.59 ± 0.05 | 0.11 ± 0.01 | 1.31 ± 0.14 |
图2 基于最优模型预测的协变量对赤狐与血雉(A)和黄喉雉鹑(B)在位点水平上的物种相互作用因子(SIF)的影响。灰色部分为每个位点SIF值的95%置信区间。
Fig. 2 The effect of covariates predicted by the optimal model on the species interaction factor (SIF) of the red fox and blood pheasant (A), red fox and buff-throated partridge (B) at the single site level. Gray area indicates 95% confidence intervals for SIF value of each site.
图3 基于最优模型预测的协变量在位点水平上对白马鸡位点使用概率的影响。黑色曲线为多项式回归拟合曲线, 灰色区域为95%置信区间。
Fig. 3 The effect of covariates predicted by the optimal model on the white eared-pheasant’s site use at the single site level. The black curve fitted with polynomial regression, gray area indicates 95% confidence intervals.
[1] |
Bailey LL, Reid JA, Forsman ED, Nichols JD (2009) Modeling co-occurrence of northern spotted and barred owls: Accounting for detection probability differences. Biological Conservation, 142, 2983-2989.
DOI URL |
[2] |
Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S (2015) Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52, 675-685.
DOI URL |
[3] |
Case TJ, Bolger DT (1991) The role of introduced species in shaping the distribution and abundance of island reptiles. Evolutionary Ecology, 5, 272-290.
DOI URL |
[4] |
Cavallini P, Lovari S (1991) Environmental-factors influencing the use of habitat in the red fox, Vulpes vulpes. Journal of Zoology, 223, 323-339.
DOI URL |
[5] | Chen LJ, Shu ZF, Yao WT, Ma Y, Xiao WH, Huang XQ (2019) Combined effects of habitat and interspecific interaction define co-occurrence patterns of sympatric Galliformes. Avian Research, 10, 344-356. |
[6] | Chen YH, Luiselli L (2009) Species richness and co-occurrence patterns of Galliformes in China at three large spatial scales: Does scale size matter? Revue D Ecologie-la Terre Et La Vie, 64, 251-260. |
[7] |
Connell JH (1983) On the prevalence and relative importance of interspecific competition: Evidence from field experiments. The American Naturalist, 122, 661-696.
DOI URL |
[8] |
Creel S, Winnie JA Jr (2005) Responses of elk herd size to fine-scale spatial and temporal variation in the risk of predation by wolves. Animal Behaviour, 69, 1181-1189.
DOI URL |
[9] |
D’Amen M, Mod HK, Gotelli NJ, Guisan A (2018) Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography, 41, 1233-1244.
DOI URL |
[10] | Deng L, Yang HZ (2010) Estimation of natural ecological value for the plateau pasturing area—A case study in Xinlong County of Sichuan Province. Sichuan Environment, 29(2), 89-94. (in Chinese with English abstract) |
[ 邓林, 杨海真 (2010) 高原牧区自然生态价值的测算——以四川省甘孜藏族自治州新龙县为例. 四川环境, 29(2), 89-94.] | |
[11] |
Farris ZJ, Kelly MJ, Karpanty S, Ratelolahy F (2016) Patterns of spatial co-occurrence among native and exotic carnivores in north-eastern Madagascar. Animal Conservation, 19, 189-198.
DOI URL |
[12] | Ge MJC, Dong DF, Long WX (1999) A preliminary observation on the ecological habits of white eared-pheasant. Chinese Journal of Zoology, 34(1), 26-28. (in Chinese) |
[ 格玛嘉措, 董德福, 龙文祥 (1999) 白马鸡生态习性的初步观察. 动物学杂志, 34(1), 26-28.] | |
[13] |
Godin JGJ, Keenleyside MHA (1984) Foraging on patchily distributed prey by a cichlid fish (Teleostei, Cichlidae): A test of the ideal free distribution theory. Animal Behaviour, 32, 120-131.
DOI URL |
[14] | Hines JE (2006) PRESENCE—Software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software. (accessed on 2020-11-25) |
[15] | Jia CX, Zheng GM, Zhou XP, Zhang HM (1999) Social organization of blood pheasant (Ithaginis cruentus) in Wolong Nature Reserve. Acta Zoologica Sinica, 45, 135-142. (in Chinese with English abstract) |
[ 贾陈喜, 郑光美, 周小平, 张和民 (1999) 卧龙自然保护区血雉的社群组织. 动物学报, 45, 135-142.] | |
[16] |
Jia F, Wang N, Zheng GM (2005) Winter habitat requirements of white eared-pheasant Crossoptilon crossoptilon and blood pheasant Ithaginis cruentus in south-west China. Bird Conservation International, 15, 303-312.
DOI URL |
[17] | Jia F, Wang N, Zheng GM (2005) Habitat selection and spatial distribution of white eared-pheasant Crossoptilon crossoptilon during early breeding period. Acta Zoologica Sinica, 51, 383-392. (in Chinese with English abstract) |
[ 贾非, 王楠, 郑光美 (2005) 白马鸡繁殖早期栖息地选择和空间分布. 动物学报, 51, 383-392.] | |
[18] |
Lesmeister DB, Nielsen CK, Schauber EM, Hellgren EC (2015) Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildlife Monographs, 191, 1-61.
DOI URL |
[19] | Li LY, Wang HD, Zhang H, Teng LW, Liu ZS (2014) Research progress of habitat selection by red fox (Vulpes vulpes). Journal of Anhui Agricultural Sciences, 42, 3289-3292, 3295. (in Chinese with English abstract) |
[ 李路云, 王海东, 张海, 滕丽微, 刘振生 (2014) 赤狐生境选择研究进展. 安徽农业科学, 42, 3289-3292, 3295.] | |
[20] |
Luttbeg B, Sih A (2004) Predator and prey habitat selection games: The effects of how prey balance foraging and predation risk. Israel Journal of Zoology, 50, 233-254.
DOI URL |
[21] | Ma Y, Sun ZH, Liu ZS, Teng LW (2014) Food habits by red fox (Vulpes vulpes), a review. Journal of Economic Animal, 18, 53-58. (in Chinese with English abstract) |
[ 马勇, 孙兆惠, 刘振生, 滕丽微 (2014) 赤狐食性的研究进展. 经济动物学报, 18, 53-58.] | |
[22] |
MacKenzie DI, Bailey LL, Nichols JD (2004) Investigating species co-occurrence patterns when species are detected imperfectly. Journal of Animal Ecology, 73, 546-555.
DOI URL |
[23] |
Magle SB, Simoni LS, Lehrer EW, Brown JS (2014) Urban predator-prey association: Coyote and deer distributions in the Chicago metropolitan area. Urban Ecosystems, 17, 875-891.
DOI URL |
[24] |
Murphy A, Kelly MJ, Karpanty SM, Andrianjakarivelo V, Farris ZJ (2019) Using camera traps to investigate spatial co-occurrence between exotic predators and native prey species: A case study from northeastern Madagascar. Journal of Zoology, 307, 264-273.
DOI |
[25] |
Ngoprasert D, Lynam AJ, Sukmasuang R, Tantipisanuh N, Chutipong W, Steinmetz R, Jenks KE, Gale GA, Grassman LI Jr, Kitamura S, Howard J, Cutter P, Cutter P, Leimgruber P, Songsasen N, Reed DH (2012) Occurrence of three felids across a network of protected areas in Thailand: Prey, intraguild, and habitat associations. Biotropica, 44, 810-817.
DOI URL |
[26] |
Rabelo RM, Aragón S, Bicca-Marques JC (2019) Prey abundance drives habitat occupancy by jaguars in Amazonian floodplain river islands. Acta Oecologica, 97, 28-33.
DOI URL |
[27] |
Richmond OMW, Hines JE, Beissinger SR (2010) Two-species occupancy models: A new parameterization applied to co-occurrence of secretive rails. Ecological Applications, 20, 2036-2046.
DOI URL |
[28] |
Ritchie EG, Martin JK, Johnson CN, Fox BJ (2009) Separating the influences of environment and species interactions on patterns of distribution and abundance: Competition between large herbivores. Journal of Animal Ecology, 78, 724-731.
DOI PMID |
[29] |
Steinmetz R, Seuaturien N, Chutipong W (2013) Tigers, leopards, and dholes in a half-empty forest: Assessing species interactions in a guild of threatened carnivores. Biological Conservation, 163, 68-78.
DOI URL |
[30] |
Wang B, Xu Y, Price M, Yang N, Liu W, Zhu BW, Zhong X, Ran JH (2021) Niche partitioning among three montane ground-dwelling pheasant species along multiple ecological dimensions. Ibis, 163, 171-182.
DOI URL |
[31] |
Wang YW, Allen ML, Wilmers CC (2015) Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biological Conservation, 190, 23-33.
DOI URL |
[32] |
Werner EE (1992) Individual behavior and higher-order species interactions. The American Naturalist, 140, s5-s32.
DOI URL |
[33] | Yang CH, Zhang HM, Zhou XP, Wang PY, Wang XM (2006) Review of habitat selection in the giant panda (Ailuropoda melanoleuca). Acta Ecologica Sinica, 26, 3442-3453. (in Chinese with English abstract) |
[ 杨春花, 张和民, 周小平, 王鹏彦, 王小明 (2006) 大熊猫(Ailuropoda melanoleuca)生境选择研究进展. 生态学报, 26, 3442-3453.] | |
[34] | You ZQ, Tang ZH, Yang YB, Yang LH, Shi HY, Liu H, Gan X, Zheng TC, Jiang ZG (2014) Summer habitat selection by white-lipped deer (Cervus albirostris) in Chaqingsongduo White-lipped Deer National Nature Reserve. Acta Theriologica Sinica, 34, 46-53. (in Chinese with English abstract) |
[ 游章强, 唐中海, 杨远斌, 杨丽红, 石红艳, 刘昊, 甘潇, 郑天才, 蒋志刚 (2014) 察青松多白唇鹿国家级自然保护区白唇鹿对夏季生境的选择. 兽类学报, 34, 46-53.] | |
[35] | Zhao GJ, Gong YN, Yang HT, Xie B, Wang TM, Ge JP, Feng LM (2019) Study on habitat use and activity rhythms of wild boar in eastern region of Northeast Tiger and Leopard National Park. Acta Theriologica Sinica, 39, 431-441. (in Chinese with English abstract) |
[ 赵国静, 宫一男, 杨海涛, 谢冰, 王天明, 葛剑平, 冯利民 (2019) 东北虎豹国家公园东部的野猪生境利用和活动节律初步研究. 兽类学报, 39, 431-441.] | |
[36] | Zhu BW, Wang B, Ran JH, Li B, Huang F, Li XQ, Gu XD (2019) Seasonal variation of daily activity patterns and diet of yellow-throated marten (Martes flavigula). Acta Theriologica Sinica, 39, 52-61. (in Chinese with English abstract) |
[ 朱博伟, 王彬, 冉江洪, 李波, 黄蜂, 李晓清, 古晓东 (2019) 黄喉貂日活动节律及食性的季节变化. 兽类学报, 39, 52-61.] |
[1] | 王东, 赛青高娃, 王子涵, 赵宏秀, 连新明. 长江源区同域分布兔狲、藏狐和赤狐的时空重叠度[J]. 生物多样性, 2022, 30(9): 21365-. |
[2] | 孔玥峤, 刘炎林, 贺成武, 李天醍, 李全亮, 马存新, 王大军, 李晟. 评估荒漠猫的日活动节律: 基于红外相机与卫星颈圈数据的对比[J]. 生物多样性, 2022, 30(9): 22081-. |
[3] | 初漠嫣, 梁书洁, 李沛芸, 贾丁, 阿卜杜赛麦提·买尔迪亚力, 李雪阳, 姜楠, 赵翔, 李发祥, 肖凌云, 吕植. 三江源国家级自然保护区内云塔村雪豹种群动态[J]. 生物多样性, 2022, 30(9): 22157-. |
[4] | 邓雪琴, 刘统, 刘天时, 徐恺, 姚松, 黄小群, 肖治术. 河南内乡宝天曼国家级自然保护区豹猫及其潜在猎物之间日活动节律的季节性[J]. 生物多样性, 2022, 30(9): 22263-. |
[5] | 王双贵, 郭志宏, 顾伯健, 李天醍, 苏玉兵, 马伯丞, 管宏信, 黄巧雯, 王放, 张卓锦. 六盘山华北豹的栖息地利用及保护建议[J]. 生物多样性, 2022, 30(9): 22342-. |
[6] | 王雅婷, 张定海, 张志山. 古尔班通古特沙漠固定沙丘上白梭梭和梭梭的空间分布及种间关联性[J]. 生物多样性, 2022, 30(3): 21280-. |
[7] | 王重阳, 赵联军, 孟世勇. 王朗国家级自然保护区滑坡体兰科植物分布格局及其保护策略[J]. 生物多样性, 2022, 30(2): 21313-. |
[8] | 乔江, 贾国清, 周华明, 龚林, 蒋勇, 肖能文, 高晓奇, 温安祥, 王杰. 四川贡嘎山国家级自然保护区鸟兽多样性[J]. 生物多样性, 2022, 30(2): 20395-. |
[9] | 肖治术, 肖文宏, 王天明, 李晟, 连新明, 宋大昭, 邓雪琴, 周岐海. 中国野生动物红外相机监测与研究: 现状及未来[J]. 生物多样性, 2022, 30(10): 22451-. |
[10] | 滕继荣, 刘兴明, 何礼文, 王钧亮, 黄建, 冯杰, 王放, 翁悦. 甘肃白水江国家级自然保护区林缘社区饲养犬只对大熊猫时空节律的影响[J]. 生物多样性, 2022, 30(1): 21204-. |
[11] | 李晟, 王大军, 陈祥辉, 卜红亮, 刘小庚, 靳彤. 四川老河沟保护地2011-2015年野生动物红外相机监测数据集[J]. 生物多样性, 2021, 29(9): 1170-1174. |
[12] | 刘璐, 迟瑶, 吴朝宁, 钱天陆, 王结臣. 陆栖哺乳动物的地理隔离研究进展[J]. 生物多样性, 2021, 29(8): 1134-1145. |
[13] | 孔玥峤, 李晟, 刘宝权, 周佳俊, 李成, 余建平. 2010-2020年中华穿山甲在中国的发现记录及保护现状[J]. 生物多样性, 2021, 29(7): 910-917. |
[14] | 韩雪松, 董正一, 赵格, 赵翔, 史湘莹, 吕植, 李宏奇. 基于视频监控系统的欧亚水獭活动节律初报及红外相机监测效果评估[J]. 生物多样性, 2021, 29(6): 770-779. |
[15] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn