生物多样性 ›› 2021, Vol. 29 ›› Issue (6): 746-758. DOI: 10.17520/biods.2020368
欧阳园丽1,2,3, 张参参1,2, 林小凡1,2, 田立新2, 顾菡娇1,2, 陈伏生1,2,3, 卜文圣1,2,3,*()
收稿日期:
2020-09-17
接受日期:
2020-11-17
出版日期:
2021-06-20
发布日期:
2020-12-11
通讯作者:
卜文圣
作者简介:
* E-mail: bws2007@163.com基金资助:
Yuanli Ouyang1,2,3, Cancan Zhang1,2, Xiaofan Lin1,2, Lixin Tian2, Hanjiao Gu1,2, Fusheng Chen1,2,3, Wensheng Bu1,2,3,*()
Received:
2020-09-17
Accepted:
2020-11-17
Online:
2021-06-20
Published:
2020-12-11
Contact:
Wensheng Bu
摘要:
探究植物功能性状的种内和种间变异不仅有助于揭示植物对环境的适应, 也能够反映植物的生态策略, 但不同菌根类型树木生长过程中根叶形态学功能性状的适应策略仍有待探究。本研究依托中国亚热带森林生物多样性与生态系统功能实验研究平台(BEF-China)选取7种丛枝菌根(AM)树木和7种外生菌根(EM)树木的纯林, 测定各个树种的比叶面积、叶干物质含量、比根长、根系直径、树高生长速率、地径生长速率及细根生物量等根叶形态学功能性状和生长指标, 探讨了两种菌根类型树种间的根叶形态学特征的差异。结果表明: 与AM树种相比, EM树种具有较小的比叶面积、吸收根平均直径和生长速率, 但具有更大的叶干物质含量; 两种菌根树种之间的比根长和细根生物量无显著差异。比叶面积、叶干物质含量、树高生长速率、地径生长速率和细根生物量等功能性状及生长指标在不同菌根类型、树种及二者的交互作用中均存在显著差异; 且树种、根功能型、菌根类型及三者之间的交互作用均对根功能性状有显著影响。EM树种地上指标的种内变异均大于种间变异, 而AM树种地上指标的种内和种间变异程度类似; 但两种菌根树种细根生物量的种间变异均大于种内变异。尽管两种菌根树种地上部分生长速率较快通常表现为较低的叶干物质含量, 但AM树种通常拥有较高的吸收根比根长, 而EM树种拥有较粗的运输根平均直径。吸收根比根长越低, 两类菌根树种的细根生物量就越多。由此可见, 根叶功能性状对植物地上部分的生长具有一定的协同效应, 其中运输根主要在EM树种地上生长过程中发挥重要作用, 吸收根主要与AM树种的地上部分生长有关; 但两类菌根树种的地下细根生物量均与吸收根有关。
欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣 (2021) 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例. 生物多样性, 29, 746-758. DOI: 10.17520/biods.2020368.
Yuanli Ouyang, Cancan Zhang, Xiaofan Lin, Lixin Tian, Hanjiao Gu, Fusheng Chen, Wensheng Bu (2021) Growth differences and characteristics of root and leaf morphological traits for different mycorrhizal tree species in the subtropical China: A case study of Xingangshan, Jiangxi Province. Biodiversity Science, 29, 746-758. DOI: 10.17520/biods.2020368.
树种 Tree species | 菌根类型 Mycorrhiza type | |
---|---|---|
白栎 | Quercus fabri | 外生菌根 EM |
青冈 | Cyclobalanopsis glauca | 外生菌根 EM |
短柄枹栎 | Quercus serrata | 外生菌根 EM |
苦槠 | Castanopsis sclerophylla | 外生菌根 EM |
细叶青冈 | Cyclobalanopsis myrsinifolia | 外生菌根 EM |
石栎 | Lithocarpus glaber | 外生菌根 EM |
锥栗 | Castanea henryi | 外生菌根 EM |
无患子 | Sapindus saponaria | 丛枝菌根 AM |
枫香 | Liquidambar formosana | 丛枝菌根 AM |
复羽叶栾 | Koelreuteria bipinnata | 丛枝菌根 AM |
乌桕 | Triadica sebifera | 丛枝菌根 AM |
蓝果树 | Nyssa sinensis | 丛枝菌根 AM |
木荷 | Schima superba | 丛枝菌根 AM |
南酸枣 | Choerospondias axillaris | 丛枝菌根 AM |
表1 本研究选取的14个树种的基本特征
Table 1 Basic characteristics of 14 tree species in this study
树种 Tree species | 菌根类型 Mycorrhiza type | |
---|---|---|
白栎 | Quercus fabri | 外生菌根 EM |
青冈 | Cyclobalanopsis glauca | 外生菌根 EM |
短柄枹栎 | Quercus serrata | 外生菌根 EM |
苦槠 | Castanopsis sclerophylla | 外生菌根 EM |
细叶青冈 | Cyclobalanopsis myrsinifolia | 外生菌根 EM |
石栎 | Lithocarpus glaber | 外生菌根 EM |
锥栗 | Castanea henryi | 外生菌根 EM |
无患子 | Sapindus saponaria | 丛枝菌根 AM |
枫香 | Liquidambar formosana | 丛枝菌根 AM |
复羽叶栾 | Koelreuteria bipinnata | 丛枝菌根 AM |
乌桕 | Triadica sebifera | 丛枝菌根 AM |
蓝果树 | Nyssa sinensis | 丛枝菌根 AM |
木荷 | Schima superba | 丛枝菌根 AM |
南酸枣 | Choerospondias axillaris | 丛枝菌根 AM |
叶功能性状及生长指标 Leaf functional traits and growth indices | 树种 Tree species | 菌根类型 Mycorrhizal type | 树种 × 菌根类型 Tree species × mycorrhizal type |
---|---|---|---|
比叶面积 Specific leaf area | 12.03*** | 113.47*** | 30.23*** |
叶干物质含量 Leaf dry matter content | 32.04*** | 155.43*** | 81.65*** |
树高生长速率 The growth rate of height | 21.21*** | 29.37*** | 26.77*** |
地径生长速率 The growth rate of basal diameter | 6.27*** | 32.78*** | 9.74*** |
细根生物量 Fine root biomass | 29.85*** | 3.78* | 28.75*** |
表2 树种和菌根类型对叶功能性状及生长指标影响的双因素方差分析(F值)
Table 2 Two-way ANOVA of the effects of tree species and mycorrhizal type on leaf functional traits and growth indices (Fvalue)
叶功能性状及生长指标 Leaf functional traits and growth indices | 树种 Tree species | 菌根类型 Mycorrhizal type | 树种 × 菌根类型 Tree species × mycorrhizal type |
---|---|---|---|
比叶面积 Specific leaf area | 12.03*** | 113.47*** | 30.23*** |
叶干物质含量 Leaf dry matter content | 32.04*** | 155.43*** | 81.65*** |
树高生长速率 The growth rate of height | 21.21*** | 29.37*** | 26.77*** |
地径生长速率 The growth rate of basal diameter | 6.27*** | 32.78*** | 9.74*** |
细根生物量 Fine root biomass | 29.85*** | 3.78* | 28.75*** |
图1 14个树种的叶片功能性状变异。不同小写字母表示不同树种间的叶功能性状差异显著(P < 0.05)。
Fig. 1 Variations in leaf functional traits with 14 tree species. Different lowercase letters represent significant differences between different tree species for leaf functional traits at P< 0.05.
图2 不同菌根树种之间叶片和根功能性状及生长指标的差异。不同小写字母表示不同树种间的叶和根功能性状及生长指标差异显著(P < 0.05)。
Fig. 2 Variations in leaf and root functional traits, above- and belowground growth indices with different mycorrhizal tree species, different lowercase letters represent significant differences of leaf and root functional traits, above- and belowground growth indices between different tree species at P< 0.05.
因素类型 Factor type | 比根长 Specific root length | 平均直径 Average diameter |
---|---|---|
树种 Tree species | 10.80*** | 14.05*** |
根功能类型 Root functional type | 683.40*** | 1,462.96*** |
菌根类型 Mycorrhizal type | 2.06* | 3.37* |
树种 × 根功能类型 Tree species × root functional type | 15.12** | 79.10*** |
树种 × 菌根类型 Tree species × mycorrhizal type | 2.54** | 1.91* |
根功能类型 × 菌根类型 Root functional type × mycorrhizal type | 156.42*** | 293.21*** |
树种 × 根功能类型 × 菌根类型 Tree species × root functional type × mycorrhizal type | 64.47*** | 79.11*** |
表3 树种、根功能类型和菌根类型对根功能性状影响的多因素方差分析(F值)
Table 3 Multifactor analysis of variance of the effects of tree species, root functional type, mycorrhizal type on root functional traits (Fvalue)
因素类型 Factor type | 比根长 Specific root length | 平均直径 Average diameter |
---|---|---|
树种 Tree species | 10.80*** | 14.05*** |
根功能类型 Root functional type | 683.40*** | 1,462.96*** |
菌根类型 Mycorrhizal type | 2.06* | 3.37* |
树种 × 根功能类型 Tree species × root functional type | 15.12** | 79.10*** |
树种 × 菌根类型 Tree species × mycorrhizal type | 2.54** | 1.91* |
根功能类型 × 菌根类型 Root functional type × mycorrhizal type | 156.42*** | 293.21*** |
树种 × 根功能类型 × 菌根类型 Tree species × root functional type × mycorrhizal type | 64.47*** | 79.11*** |
图3 14个树种的根功能性状变异。不同小写字母表示不同树种间的根功能性状差异显著(P < 0.05), *表示同一树种不同功能类型的根功能性状差异显著(P < 0.05)。
Fig. 3 Variations in root traits with 14 tree species. Different lowercase letters represent significant differences of root traits between different tree species at P< 0.05. * Significant differences between different root function types of the same tree species atP< 0.05.
图4 14个树种地上地下生长指标的差异。不同小写字母表示不同树种间差异显著(P < 0.05)。
Fig. 4 Variations in above- and belowground growth indices of 14 tree species. Different lowercase letters represent significant differences of above- and belowground growth indices between different tree species at P< 0.05.
图5 不同菌根树种根叶功能性状及生长指标的变异来源
Fig. 5 Sources of variations in leaf and root functional traits, above- and belowground growth indices of different mycorrhizal type tree species
随机效应 Random effects | 因变量 Dependent variables | 截距 Intercept | 固定效应 Fixed effects | 条件决定 系数 Conditional R2 | 边际决定 系数 Marginal R2 | ||
---|---|---|---|---|---|---|---|
叶干物质含量 LDMC | 吸收根比根长 SRL of absorbing root | 运输根平均直径 Average diameter of transporting root | |||||
EM树种 Ectomycorrhizal tree | 树高生长速率 Growth rate of height | ?0.23 | ?0.11 | - | 0.40 | 0.69 | 0.67 |
地径生长速率 Growth rate of basal diameter | 0.29 | - | - | 0.30 | 0.97 | 0.96 | |
AM树种 Arbuscular mycorrhizal tree | 细根生物量 Fine root biomass | ?0.12 | - | ?0.21 | - | 0.93 | 0.35 |
树高生长速率 Growth rate of height | 0.22 | ?0.21 | 0.09 | - | 0.65 | 0.25 | |
地径生长速率 Growth rate of basal diameter | 0.56 | ?0.13 | 0.07 | - | 0.44 | 0.24 | |
细根生物量 Fine root biomass | ?0.21 | ?0.18 | 0.94 | 0.34 |
表4 根叶功能性状与不同菌根树种生长关系的混合线性模型
Table 4 Mixed linear models of the relationship between leaf, root functional traits and growth indices of different mycorrhizal trees
随机效应 Random effects | 因变量 Dependent variables | 截距 Intercept | 固定效应 Fixed effects | 条件决定 系数 Conditional R2 | 边际决定 系数 Marginal R2 | ||
---|---|---|---|---|---|---|---|
叶干物质含量 LDMC | 吸收根比根长 SRL of absorbing root | 运输根平均直径 Average diameter of transporting root | |||||
EM树种 Ectomycorrhizal tree | 树高生长速率 Growth rate of height | ?0.23 | ?0.11 | - | 0.40 | 0.69 | 0.67 |
地径生长速率 Growth rate of basal diameter | 0.29 | - | - | 0.30 | 0.97 | 0.96 | |
AM树种 Arbuscular mycorrhizal tree | 细根生物量 Fine root biomass | ?0.12 | - | ?0.21 | - | 0.93 | 0.35 |
树高生长速率 Growth rate of height | 0.22 | ?0.21 | 0.09 | - | 0.65 | 0.25 | |
地径生长速率 Growth rate of basal diameter | 0.56 | ?0.13 | 0.07 | - | 0.44 | 0.24 | |
细根生物量 Fine root biomass | ?0.21 | ?0.18 | 0.94 | 0.34 |
[1] |
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Lavorel S (2010) A multi-trait approach reveals the structure and the relative importance of intra- versus interspecific variability in plant traits. Functional Ecology, 24,1192-1201.
DOI URL |
[2] |
Auger S, Shipley B (2013) Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24,419-428.
DOI URL |
[3] | Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National Academy of Sciences, USA, 116,23163-23168. |
[4] |
Bu WS, Schmid B, Liu XJ, Li Y, Hrdtle W, Von Oheimb G, Liang Y, Sun ZK, Huang YY, Bruelheide H, Ma KP (2017) Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. Journal of Plant Ecology, 10,158-169.
DOI URL |
[5] |
Comas LH, Callahan HS, Midford PE (2014) Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies. Ecology and Evolution, 4,2979-2990.
DOI URL |
[6] |
Cornelissen J, Aerts R, Cerabolini B, Werger M, Heijden M (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129,611-619.
DOI PMID |
[7] |
De la Riva EG, Maranon T, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Villar R (2018) Root traits across environmental gradients in Mediterranean woody communities: Are they aligned along the root economics spectrum?. Plant and Soil, 424,35-48.
DOI URL |
[8] |
Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15,295-304.
DOI URL |
[9] | Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell & Environment, 32,992-1003. |
[10] |
Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant and Soil, 366,1-27.
DOI URL |
[11] |
Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Functional Ecology, 19,369-377.
DOI URL |
[12] |
Fordyce JA (2006) The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. The Journal of Experimental Biology, 209,2377-2383.
DOI URL |
[13] | Geng Y, Ma WH, Wang L, Baumann F, Kuhn P, Scholten T, He JS (2017) Linking above- and belowground traits to soil and climate variables: An integrated database on China's grassland species. Ecology, 98, 1471. |
[14] |
Heijden M, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 157,569-578.
DOI URL |
[15] |
Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99,954-963.
DOI URL |
[16] |
Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. Journal of Ecology, 98,1134-1140.
DOI URL |
[17] |
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333,880-882.
DOI URL |
[18] |
Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, Bodegom PM (2012) Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21,224-235.
DOI URL |
[19] |
Laforest-Lapointe I, Martínez-Vilalta J, Retana J (2014) Intraspecific variability in functional traits matters: Case study of Scots pine. Oecologia, 175,1337-1348.
DOI PMID |
[20] | Liu NN, Tian QY, Zhang WH (2014) Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol . Chinese Journal of Plant Ecology (Chinese version), 38,905-915. (in Chinese with English abstract) |
刘娜娜, 田秋英, 张文浩 (2014) 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较. 植物生态学报, 38,905-915.]
DOI |
|
[21] |
Liu XJ, Ma KP (2015) Plant functional traits—Concepts, applications and future directions. Scientia Sinica Vitae, 45,325-339. (in Chinese with English abstract)
DOI URL |
刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45,325-339.] | |
[22] | Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21,390-391. (in Chinese) |
马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21,390-391.] | |
[23] |
Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13,838-848.
DOI PMID |
[24] |
Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models . Methods in Ecology and Evolution, 4,133-142.
DOI URL |
[25] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine north American trees. Ecological Monographs, 72,293-309.
DOI URL |
[26] | Prinzing A, Durka W, Klotz S, Brand R (2001) The niche of higher plants: Evidence for phylogenetic conservatism. Proceedings of the Royal Society B-Biological Sciences, 268,2383-2389. |
[27] |
Reich PB (2014) The world-wide ‘fast-slow' plant economics spectrum: A traits manifesto. Journal of Ecology, 102,275-301.
DOI URL |
[28] | Segnitz RM, Russo SE, Davies SJ, Peay KG (2020) Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology, 101,e03083. |
[29] | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008) Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Journal of Plant Ecology (Chinese version), 32,1217-1226. (in Chinese with English abstract) |
师伟, 王政权, 刘金梁, 谷加存, 郭大立 (2008) 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32,1217-1226.]
DOI |
|
[30] |
Shipley B (2002) Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Functional Ecology, 16,682-689.
DOI URL |
[31] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016) Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24,262-270. (in Chinese with English abstract)
DOI URL |
唐青青, 黄永涛, 丁易, 臧润国 (2016) 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24,262-270.]
DOI |
|
[32] |
Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: Life in the real world. Mycologist, 19,102-112.
DOI URL |
[33] |
Turrini A, Bedini A, Loor MB, Santini G, Sbrana C, Giovannetti M, Avio L (2018) Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species. Biology and Fertility of Soils, 54,203-217.
DOI URL |
[34] |
Twieg BD, Durall DM, Simard SW (2010) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist, 176,437-447.
DOI URL |
[35] |
Wells CE, Eissenstat DM (2002) Beyond the roots of young seedlings: The influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21,324-334.
DOI URL |
[36] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33,125-159.
DOI URL |
[37] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007) Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99,1003-1015.
DOI URL |
[38] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytologist, 166,485-496.
PMID |
[39] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428,821-827.
PMID |
[40] |
Zi HB, Chen Y, Hu L, Wang CT (2018) Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 42,38-49. (in Chinese with English abstract)
DOI URL |
字洪标, 陈焱, 胡雷, 王长庭 (2018) 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 42,38-49.]
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn