生物多样性 ›› 2020, Vol. 28 ›› Issue (6): 707-717. DOI: 10.17520/biods.2020042
所属专题: 土壤生物与土壤健康; 青藏高原生物多样性与生态安全
收稿日期:
2020-02-16
接受日期:
2020-04-10
出版日期:
2020-06-20
发布日期:
2020-05-15
通讯作者:
牛克昌
基金资助:
Received:
2020-02-16
Accepted:
2020-04-10
Online:
2020-06-20
Published:
2020-05-15
Contact:
Kechang Niu
摘要:
土壤线虫是地下食物网的重要组成部分, 在生态系统能量流动和物质循环中起着至关重要的作用。大量研究报道了肥力等土壤环境对土壤线虫物种多样性及各功能群多度的影响, 而我们对土壤线虫功能多样性如何响应土壤环境变化依然知之甚少。本研究以群落水平个体大小和个体大小多样性表征土壤线虫功能多样性。在青藏高原高寒草甸选择3个研究点, 调查和分析了不同生境(沟底平地、阴坡、阳坡和山顶)土壤线虫物种多样性、各功能群多度和功能多样性及其与土壤理化因子和植物多样性的关系。结果表明: (1)土壤线虫个体多度和物种多样性在阳坡最高, 随土壤pH值和土壤总磷增加而升高; 而基于个体大小的土壤线虫功能多样性主要受土壤养分影响, 随土壤总氮和有机质增加而增加, 随土壤总磷含量增加而减少; (2)食细菌和食真菌线虫多度在沟底最高, 植食与捕食杂食线虫多度在山顶最低; 除捕食杂食线虫外, 各功能群多度也主要随土壤磷增加而升高; 除食真菌线虫外, 各功能群多度随植物物种丰富度的增加而减少。本研究强调了土壤线虫物种和功能多样性受不同土壤环境因子的影响, 丰富了土壤线虫多样性研究的内容, 为理解高寒草甸土壤动物多样性形成、维持和变化提供了更广阔的 视角。
王宇彤, 牛克昌 (2020) 青藏高原高寒草甸土壤环境对线虫功能多样性的影响. 生物多样性, 28, 707-717. DOI: 10.17520/biods.2020042.
Yutong Wang, Kechang Niu (2020) Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows. Biodiversity Science, 28, 707-717. DOI: 10.17520/biods.2020042.
变异度 Variability (%) | 以研究点A为参照的研究点间差异 Direction and strength of site effect (relative to site A) | 以沟底平地为参照的生境间差异 Direction and strength of terrain effect (relative to plots at valleys) | |||||
---|---|---|---|---|---|---|---|
研究点 Sites | 生境 Terrain | B研究点 Site B | C研究点 Site C | 阴坡 Northern | 阳坡 Southern | 山顶 Top | |
线虫α多样性 Nematode α diversity | |||||||
线虫丰富度 Nematode richness | 2.44 | 23.3 | 0.07 | 0.13 | 0.09 | 0.27* | -0.14 |
线虫Shannon多样性 Nematode Shannon diversity | 8.67 | 39.36* | 0.07 | 0.24* | 0.06 | 0.46* | -0.05 |
线虫均匀度 Nematode evenness diversity | 8.59 | 25.02* | -0.02 | 0.03 | 0.02 | 0.09* | 0.05 |
线虫个体多度 Nematode individual abundance | 2.77 | 25.39* | 17.51* | 3.65 | -1.27 | 18.47* | -45.83* |
基于个体大小的土壤线虫功能多样性 Body-size based functional diversity of soil nematodes | |||||||
群落水平个体大小 CWM for body-size | 9.44 | 7.19 | -4.25 | 1.89 | 2.83 | 0.80 | 5.96 |
个体大小多样性 FDRao for body-size | 8.6 | 9.5 | -2.03 | 2.5 | 0.38 | 1.53 | 5.18 |
不同线虫功能类群个体多度 Individual abundance of each functional group | |||||||
食细菌线虫 Bacterivores | 22.22* | 15.0 | 0.85* | 0.86* | -0.41* | -0.46* | -0.68* |
食真菌线虫 Fungivores | 2.19 | 6.43 | 0.01 | -0.15 | -0.04 | -0.20* | -0.26* |
植食线虫 Herbivores | 6.45 | 3.42 | 0.44* | 0.01 | 0.44* | 0.13 | 0.24 |
捕食杂食线虫 Omnivores-Predators | 3.38 | 20.03 | -0.32* | -0.06 | 0.86* | 0.71* | 0.19 |
植物物种丰富度 Plant species richness | 5.60 | 45.93* | 0.09 | 0.08 | -0.15 | -0.25* | -0.25* |
土壤理化因子 Edaphic factors | |||||||
土壤pH值 Soil pH | 3.17* | 89.6* | 0.21* | 0.13* | 0.26* | 1.17* | 0.15* |
土壤有机质 Soil organic matter | 0.23 | 34.8* | 2.51 | 1.61 | -25.6* | 3.05 | 7.53 |
土壤总磷 Soil total P | 2.63 | 50.5* | -0.01 | -0.37 | -0.46 | -1.86* | -1.53 |
土壤速效磷 Soil available P | 10.3* | 70.2* | 1.19* | 1.77* | -2.42* | -2.95* | -5.42* |
土壤总氮 Soil total N | 17.7* | 38.9* | 0.42* | 0.48* | -0.02 | -0.50* | -0.74* |
土壤速效氮 Soil available N | 14.6* | 79.1* | 7.3 | 36.9 | 60.4 | -26.1* | -34.7 |
表1 广义线性混合效应模型检验不同研究点和生境对土壤线虫多样性的影响
Table 1 Summary of site and terrain effect on variation in soil nematode diversity tested by generalized linear mixed effect model
变异度 Variability (%) | 以研究点A为参照的研究点间差异 Direction and strength of site effect (relative to site A) | 以沟底平地为参照的生境间差异 Direction and strength of terrain effect (relative to plots at valleys) | |||||
---|---|---|---|---|---|---|---|
研究点 Sites | 生境 Terrain | B研究点 Site B | C研究点 Site C | 阴坡 Northern | 阳坡 Southern | 山顶 Top | |
线虫α多样性 Nematode α diversity | |||||||
线虫丰富度 Nematode richness | 2.44 | 23.3 | 0.07 | 0.13 | 0.09 | 0.27* | -0.14 |
线虫Shannon多样性 Nematode Shannon diversity | 8.67 | 39.36* | 0.07 | 0.24* | 0.06 | 0.46* | -0.05 |
线虫均匀度 Nematode evenness diversity | 8.59 | 25.02* | -0.02 | 0.03 | 0.02 | 0.09* | 0.05 |
线虫个体多度 Nematode individual abundance | 2.77 | 25.39* | 17.51* | 3.65 | -1.27 | 18.47* | -45.83* |
基于个体大小的土壤线虫功能多样性 Body-size based functional diversity of soil nematodes | |||||||
群落水平个体大小 CWM for body-size | 9.44 | 7.19 | -4.25 | 1.89 | 2.83 | 0.80 | 5.96 |
个体大小多样性 FDRao for body-size | 8.6 | 9.5 | -2.03 | 2.5 | 0.38 | 1.53 | 5.18 |
不同线虫功能类群个体多度 Individual abundance of each functional group | |||||||
食细菌线虫 Bacterivores | 22.22* | 15.0 | 0.85* | 0.86* | -0.41* | -0.46* | -0.68* |
食真菌线虫 Fungivores | 2.19 | 6.43 | 0.01 | -0.15 | -0.04 | -0.20* | -0.26* |
植食线虫 Herbivores | 6.45 | 3.42 | 0.44* | 0.01 | 0.44* | 0.13 | 0.24 |
捕食杂食线虫 Omnivores-Predators | 3.38 | 20.03 | -0.32* | -0.06 | 0.86* | 0.71* | 0.19 |
植物物种丰富度 Plant species richness | 5.60 | 45.93* | 0.09 | 0.08 | -0.15 | -0.25* | -0.25* |
土壤理化因子 Edaphic factors | |||||||
土壤pH值 Soil pH | 3.17* | 89.6* | 0.21* | 0.13* | 0.26* | 1.17* | 0.15* |
土壤有机质 Soil organic matter | 0.23 | 34.8* | 2.51 | 1.61 | -25.6* | 3.05 | 7.53 |
土壤总磷 Soil total P | 2.63 | 50.5* | -0.01 | -0.37 | -0.46 | -1.86* | -1.53 |
土壤速效磷 Soil available P | 10.3* | 70.2* | 1.19* | 1.77* | -2.42* | -2.95* | -5.42* |
土壤总氮 Soil total N | 17.7* | 38.9* | 0.42* | 0.48* | -0.02 | -0.50* | -0.74* |
土壤速效氮 Soil available N | 14.6* | 79.1* | 7.3 | 36.9 | 60.4 | -26.1* | -34.7 |
图1 3个研究点的4个生境中土壤理化因子与土壤线虫多样性(a)和土壤线虫各功能群个体多度(b)的关系
Fig. 1 Relationship between edaphic factors and soil nematodes diversity (a), and individual abundance of each functional group (b) over four terrains at each of three sites. SOM, Soil organic matter; SAP, Soil available P; STN, Soil total N; SAN, Soil available N; STP, Soil total P; PSR, Plant species richness; CWM, Community-weighted mean; FDRao, Functional diversity in term of Rao index.
图2 Bayes回归估计土壤环境对土壤线虫多样性的影响。土壤理化因子和植物物种丰富度对线虫多样性的影响大小以回归分析中的斜率分布估计, 其中95%置信区间不与零重叠表示影响显著。
Fig. 2 Effect of soil environment on soil nematode diversity assessed by Bayesian regression model. The effect of edaphic factors and plant species richness on soil nematode diversity assessed by distribution of estimated slopes, with significant effects indicated by 95% credible intervals that do not overlap zero. CWM, Community-weighted mean; FDRao, Functional diversity in term of Rao index.
图3 Bayes回归估计土壤环境对土壤线虫各功能群多度的影响。土壤理化因子和植物物种丰富度对各功能群多度的影响大小以回归分析中的斜率分布估计, 其中95%置信区间不与零重叠表示影响显著。
Fig. 3 Effect of soil environment on individual abundance of each functional group of soil nematodes assessed by Bayesian regression model. The effect of edaphic factors and plant species richness on individual abundance of each functional group of soil nematodes assessed by distribution of estimated slopes, with significant effects indicated by 95% credible intervals that do not overlap zero.
[1] |
Andriuzzi WS, Wall DH (2018) Grazing and resource availability control soil nematode body size and abundance-mass relationship in semi-arid grassland. Journal of Animal Ecology, 87, 1407-1417.
DOI URL PMID |
[2] | Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant and Soil, 212, 23-33. |
[3] |
Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI URL PMID |
[4] | Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: A clarification of Bergmann’s rule. Diversity and Distributions, 5, 165-174. |
[5] | Blake L, Johnston A, Goulding K (2007) Mobilization of aluminium in soil by acid depositon and its uptake by grass cut for hay—A Chemical Time Bomb. Soil Use and Management, 10, 51-55. |
[6] |
Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia, 165, 553-565.
DOI URL PMID |
[7] |
Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology and Evolution, 14, 224-228.
DOI URL PMID |
[8] | Chen DM, Lan ZC, Bai X, Grace JB, Bai YF (2013) Evidence that acidification‐induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. Journal of Ecology, 101, 1322-1334. |
[9] |
de Deyn GB, van der Putten WH (2005) Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 20, 625-633.
DOI URL PMID |
[10] | Enquist BJ, Norberg J, Bonser SP, Violle C, Webb CT, Henderson A, Sloat LL, Savage VM (2015) Scaling from traits to ecosystems: Developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Advances in Ecological Research, 52, 249-318. |
[11] | Ferris H (2010) Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97-104. |
[12] |
Flynn DFB, Mirotchnick N, Jain MIPM, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology, 92, 1573-1581.
DOI URL PMID |
[13] | Geisen S, Briones MJI, Gan H, Behan-Pelletier VM, Friman V-P, de Groot GA, Hannula SE, Lindo Z, Philippot L, Tiunov AV, Wall DH (2019) A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry, 136, 107536. |
[14] | Godefroid M, Delaville L, Marie-Luce S, Quénéhervé P (2013) Spatial stability of a plant-feeding nematode community in relation to macro-scale soil properties. Soil Biology and Biochemistry, 57, 173-181. |
[15] | Hu C, Cao ZP (2008) Nematode community structure under compost and chemical fertilizer management practice, in the North China Plain. Experimental Agriculture, 44, 485-496. |
[16] | Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, de Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50, 1049-1061. |
[17] |
Jiang YJ, Sun B, Li HX, Liu MQ, Chen LJ, Zhou S (2015) Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil. Soil Biology and Biochemistry, 88, 101-109.
DOI URL |
[18] |
Kandel SL, Smiley RW, Garland-Campbell K, Elling AA, Huggins D, Paulitz TC (2018) Spatial distribution of root lesion nematodes (Pratylenchus spp.) in a long-term no-till cropping system and their relationship with soil and landscape properties. European Journal of Plant Pathology, 150, 1011-1021.
DOI URL |
[19] |
Li XP, Zhu HM, Geisen S, Bellard C, Hu F, Li HX, Chen XY, Liu MQ (2020) Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 26, 919-930.
DOI URL PMID |
[20] |
Liang WJ, Zhang XK, Li Q, Jiang Y, Ou W, Neher DA (2005) Vertical distribution of bacterivorous nematodes under different land uses. Journal of Nematology, 37, 254-258.
URL PMID |
[21] |
Liu MQ, Chen XY, Qin JT, Wang D, Griffiths B, Hu F (2008) A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Applied Soil Ecology, 40, 250-259.
DOI URL |
[22] | Liu T, Guo R, Ran W, Whalen JK, Li HX (2015) Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biology and Biochemistry, 88, 275-281. |
[23] | Liu T, Hu F, Li HX (2019) Spatial ecology of soil nematodes: Perspectives from global to micro scales. Soil Biology and Biochemistry, 137, 107565. |
[24] | Meng FX, Ou W, Li Q, Jiang Y, Wen DZ (2006) Vertical distribution and seasonal fluctuation of nematode trophic groups as affected by land use. Pedosphere, 16, 169-176. |
[25] | Mu JP, Zeng Y, Wu Q, Niklas KJ, Niu KC (2016) Traditional grazing regimes promote biodiversity and increase nectar production in Tibetan alpine meadows. Agriculture, Ecosystems and Environment, 233, 336-342. |
[26] | Mulder C, Elser JJ (2009) Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 15, 2730-2738. |
[27] | Mulder C, Harm J, van Wezel AP (2005) Numerical abundance and biodiversity of below-ground taxocenes along a pH gradient across the Netherlands. Journal of Biogeography, 32, 1775-1790. |
[28] | Nahar MS, Grewal PS, Miller SA, Stinner D, Stinner BR, Kleinhenz MD, Wszelaki A, Doohan D (2006) Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Applied Soil Ecology, 34, 140-151. |
[29] | Nielsen UN, Ayres E, Wall DH, Li G, Bardgett RD, Wu TH, Garey JR (2014) Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23, 968-978. |
[30] | Niu KC, Choler P, de Bello F, Mirotchnick N, Du GZ, Sun SC (2014) Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. Agriculture, Ecosystems and Environment, 182, 106-112. |
[31] |
Niu KC, Liu T, Shen QR, Li HX (2015) Does body size-abundance allometry in soil fauna vary with environment? A field test for nematode communities in response to fertilization. Soil Biology and Biochemistry, 91, 268-270.
DOI URL |
[32] | Niu KC, He JS, Lechowicz MJ (2016) Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 53, 1554-1564. |
[33] | Niu KC, Zhang ST, Lechowicz MJ (2020) Harsh environmental regimes increase the functional significance of intraspecific variation in plant communities. Functional Ecology, 34, 1666-1677. |
[34] | Pan FJ, McLaughlin NB, Yu Q, Xue AG, Xu YL, Han XZ, Li CJ, Zhao D (2010) Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybean-wheat-corn rotation. European Journal of Soil Biology, 46, 105-111. |
[35] | Pey B, Nahmani J, Auclerc A, Capowiez Y, Cluzeau D, Cortet J, Decaens T, Deharveng L, Dubs F, Joimel S (2014) Current use of and future needs for soil invertebrate functional traits in community ecology. Basic and Applied Ecology, 15, 194-206. |
[36] | Rao CR (1982) Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24-43. |
[37] |
Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Bessler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, Kowalski E, Kummer V, Kuu A, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
URL PMID |
[38] | Sikora AR (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annual Review of Phytopathology, 30, 245-270. |
[39] | Shi LL, Fu SL (2014) Review of soil biodiversity research: History, current status and future challenges. Chinese Science Bulletin, 59, 493-509. (in Chinese with English abstract) |
[ 时雷雷, 傅声雷 (2014) 土壤生物多样性研究: 历史, 现状与挑战. 科学通报, 59, 493-509.] | |
[40] |
Sinsabaugh RL, Shah JJF (2011) Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse. Biogeochemistry, 102, 31-43.
DOI URL |
[41] |
Sohlenius B, Bostrom S, Viketoft M (2011) Effects of plant species and plant diversity on soil nematodes—A field experiment on grassland run for seven years. Nematology, 13, 115-131.
DOI URL |
[42] |
Song DG, Pan KW, Tariq A, Sun F, Li ZL, Sun XM, Zhang L, Olusanya OA, Wu XG (2017) Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology, 114, 161-169.
DOI URL |
[43] | Tita G, Vincx M, Desrosiers G (1999) Size spectra, body width and morphotypes of intertidal nematodes: An ecological interpretation. Journal of the Marine Biological Association of the United Kingdom, 79, 1007-1015. |
[44] |
van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos-Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen XY, Costa SR, Creamer R, Mauro da Cunha Castro J, Dam M, Djigal D, Escuer M, Griffiths BS, Gutierrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin AA, Li Q, Liang WJ, Magilton M, Marais M, Martin JAR, Matveeva E, Mayad EH, Mulder C, Mullin P, Neilson R, Nguyen TAD, Nielsen UN, Okada H, Rius JEP, Pan K, Peneva V, Pellissier L, Carlos Pereira da Silva J, Pitteloud C, Powers TO, Powers K, Quist CW, Rasmann S, Moreno SS, Scheu S, Setala H, Sushchuk A, Tiunov AV, Trap J, van der Putten W, Vestergard M, Villenave C, Waeyenberge L, Wall DH, Wilschut R, Wright DG, Yang JI, Crowther TW (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194-198.
URL PMID |
[45] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos, 116, 882-892. |
[46] | Wang J, Hu J, Du GZ (2015) Effects of nitrogen and phosphorus on the soil nematode community in Tibetan Plateau alpine meadows. Acta Prataculturae Sinica, 24(12), 20-28. (in Chinese with English abstract) |
[ 王静, 胡靖, 杜国祯 (2015) 施氮磷肥对青藏高原高寒草甸土壤线虫群落组成的影响. 草业学报, 24(12), 20-28.] | |
[47] | Wang XT, Xiao S, Yang XL, Liu ZY, Zhou XH, Du GZ, Zhang LM, Guo AF, Chen SY, Nielsen UN (2019) Dominant plant species influence nematode richness by moderating understory diversity and microbial assemblages. Soil Biology and Biochemistry, 137, 107566. |
[48] | Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology, 16, 585-595. |
[49] |
Wu JH, Chen HL, Zhang YZ (2016) Latitudinal variation in nematode diversity and ecological roles along the Chinese coast. Ecology and Evolution, 6, 8018-8027.
URL PMID |
[50] | Wu TH, Ayres E, Bardgett RD, Wall DH, Garey JR (2011) Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences, USA, 108, 17720-17725. |
[51] |
Yeates GW, Bongers TD, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
URL PMID |
[52] | Yeates GW, Coleman DC (1982) Nematodes and decomposition. In: Nematodes in Soil Ecosystems (ed. Freckman DW), pp. 55-80. University of Texas Press, Austin, Texas. |
[53] |
Yeates GW (2003) Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199-210.
DOI URL |
[54] | Zhao K, Jing X, Sanders NJ, Chen LT, Shi Y, Flynn DFB, Wang YH, Chu HY, Liang WJ, He JS (2017) On the controls of abundance for soil-dwelling organisms on the Tibetan Plateau. Ecosphere, 8, e01901. |
[55] | Zhao XG, Zhang ST, Niu KC (2020a) Association of soil bacterial diversity with plant community functional in alpine meadows. Scientia Sinica Vitae, 50, 70-80. (in Chinese with English abstract) |
[ 赵兴鸽, 张世挺, 牛克昌 (2020a) 高寒草甸植物群落功能属性与土壤细菌多样性关系. 中国科学: 生命科学, 50, 70-80.] | |
[56] | Zhao XG, Zhang ST, Niu KC (2020b) Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadow. Chinese Journal of Applied and Environmental Biology, 26, 1-9. (in Chinese with English abstract) |
[ 赵兴鸽, 张世挺, 牛克昌 (2020b) 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性关系. 应用与环境生物学报, 26, 1-9.] | |
[57] | Zhou XH, Wu WJ, Niu KC, Du GZ (2019) Realistic loss of plant species diversity decreases soil quality in a Tibetan alpine meadow. Agriculture, Ecosystems and Environment, 279, 25-32. |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[3] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[4] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[5] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[6] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[7] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[8] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[9] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[10] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[11] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[12] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[13] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[14] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[15] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn