生物多样性 ›› 2020, Vol. 28 ›› Issue (6): 749-758. DOI: 10.17520/biods.2019344
所属专题: 土壤生物与土壤健康
收稿日期:
2019-11-04
接受日期:
2020-03-03
出版日期:
2020-06-20
发布日期:
2020-05-30
通讯作者:
张西美
基金资助:
Received:
2019-11-04
Accepted:
2020-03-03
Online:
2020-06-20
Published:
2020-05-30
Contact:
Ximei Zhang
摘要:
全球变化对人类环境的影响是近几十年世界广泛关注的热点之一。内蒙古草原不仅是我国重要的牲畜和饲料生产基地, 而且有着不可替代的生态系统功能。土壤微生物是地球上多样性最高的生物类群, 在驱动碳氮循环等多种生态系统过程中发挥着至关重要的作用。由于研究技术的限制和群落结构复杂等原因, 土壤微生物生态学研究还处于描述性阶段, 理论研究还很缺乏。鉴于此, 利用分子生物学技术尤其是新一代测序技术, 从理论层面上系统地研究全球变化背景下我国北方草地微生物多样性的维持机制具有重要意义。本文在比较各种环境变化对土壤微生物群落的相对影响的基础上, 分析全球变化对微生物多样性影响的物理化学和生态学机制, 并对未来内蒙古草原微生物多样性的重点研究领域进行了展望, 包括: (1)加强全球变化多因素综合研究; (2)加强微生物多样性维持的生态学机制的研究; (3)加强地上与地下多样性关联机制的研究; (4)加强全球大尺度多生态系统的整合研究。
李婷婷, 张西美 (2020) 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展. 生物多样性, 28, 749-758. DOI: 10.17520/biods.2019344.
Tingting Li, Ximei Zhang (2020) Research progress of the maintaining mechanisms of soil microbial diversity in Inner Mongolia grasslands under global change. Biodiversity Science, 28, 749-758. DOI: 10.17520/biods.2019344.
图1 随机性改变在16种环境变化下的相对重要性(改编自Zhang et al, 2016a)。如果随机改变的相对重要性 > 0.5, 说明环境改变主要调节随机性过程。PFG: 植物功能群。
Fig. 1 The relative importance of the stochastic change under 16 environmental changes (adapted from Zhang et al, 2016a). If the relative importance of the stochastic change is larger than 0.5, it means that stochastic processes are the primarily mediated processes. PFG, Plant functional groups.
[1] | Balint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nature Climate Change, 1, 313-318. |
[2] | Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[3] |
Brodie E, Edwards S, Clipson N (2003) Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiology Ecology, 45, 105-114.
URL PMID |
[4] | Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences, USA, 108, 14288-14293. |
[5] | Cai YJ, Chang SX, Ma B, Bork EW (2016) Watering increased DOC concentration but decreased N2O emission from a mixed grassland soil under different defoliation regimes. Biology and Fertility of Soils, 52, 987-996. |
[6] | Cao P, He JZ (2015) A preliminary theoretical framework of microbial ecology. Acta Ecologica Sinica, 35, 7263-7273. (in Chinese with English abstract) |
[ 曹鹏, 贺纪正 (2015) 微生物生态学理论框架. 生态学报, 35, 7263-7273.] | |
[7] |
Caruso T, Chan YK, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. The ISME Journal, 5, 1406-1413.
DOI URL PMID |
[8] |
Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391.
URL PMID |
[9] |
Chen C, Chen HYH, Chen XL, Huang ZQ (2019) Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications, 10, 1332.
URL PMID |
[10] |
Chen YL, Hu HW, Han HY, Du Y, Wan SQ, Xu ZW, Chen BD (2014a) Abundance and community structure of ammonia- oxidizing archaea and bacteria in response to fertilization and mowing in a temperate steppe in Inner Mongolia. FEMS Microbiology Ecology, 89, 67-79.
URL PMID |
[11] | Chen YL, Xu ZW, Xu TL, Veresoglou SD, Yang GW, Chen BD (2017) Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 115, 233-242. |
[12] | Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014b) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biology and Biochemistry, 69, 371-381. |
[13] |
Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1309.
URL PMID |
[14] | Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences, USA, 99, 10494-10499. |
[15] |
de Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; What did Baas Becking and Beijerinck really say? Environmental Microbiology, 8, 755-758.
URL PMID |
[16] | Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Muller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003. |
[17] | Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137-167. |
[18] | Eo J, Park KC (2016) Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agriculture Ecosystems & Environment, 231, 176-182. |
[19] |
Feng YZ, Chen RR, Stegen JC, Guo ZY, Zhang JW, Li ZP, Lin XG (2018) Two key features influencing community assembly processes at regional scale: Initial state and degree of change in environmental conditions. Molecular Ecology, 27, 5238-5251.
URL PMID |
[20] | Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, USA, 103, 626-631. |
[21] | Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, USA, 109, 21390-21395. |
[22] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
URL PMID |
[23] | Gao C, Kim YC, Zheng Y, Yang W, Chen L, Ji NN, Wan SQ, Guo LD (2016) Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem. Botany, 94, 459-469. |
[24] |
Giling DP, Beaumelle L, Phillips HRP, Cesarz S, Eisenhauer N, Ferlian O, Gottschall F, Guerra C, Hines J, Sendek A, Siebert J, Thakur MP, Barnes AD (2019) A niche for ecosystem multifunctionality in global change research. Global Change Biology, 25, 763-774.
URL PMID |
[25] | Grime JP (1973) Control of species density in herbaceous vegetation. Journal of Environmental Management, 1, 151-167. |
[26] | Guo X, Feng JJ, Shi Z, Zhou XS, Yuan MT, Tao XY, Hale L, Yuan T, Wang JJ, Qin YJ, Zhou AF, Fu Y, Wu LY, He ZL, Van Nostrand JD, Ning DL, Liu XD, Luo YQ, Tiedje JM, Yang YF, Zhou JZ (2018) Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 8, 813-818. |
[27] | Handelsman J, Tiedje J, Alvarez-Cohen L, Ashburner M, Cann IKO, DeLong EF, Doolittle WF, Fraser-Liggett CM, Godzik A, Gorodon JI, Riley MM, Schmid MB (2007) The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. The National Academies Press, Washington, DC. |
[28] |
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews Microbiology, 10, 497-506.
URL PMID |
[29] |
Hao YQ, Zhao XF, Zhang DY (2016) Field experimental evidence that stochastic processes predominate in the initial assembly of bacterial communities. Environmental Microbiology, 18, 1730-1739.
URL PMID |
[30] | He JZ, Guo LD (2013) Progress in the studies of microbial diversity. Biodiversity Science, 21, 391-392. (in Chinese) |
[ 贺纪正, 郭良栋 (2013) 微生物多样性研究进展与展望. 生物多样性, 21, 391-392.] | |
[31] |
Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289-292.
DOI URL PMID |
[32] | Hooper DU, Bignell DE, Brown VK, Brussaard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, Van der Putten WH, de Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50, 1049-1061. |
[33] | Horn HS (1975) Markovian properties of forest succession. In: Ecology and Evolution of Communities (eds Cody ML, Diamond JM), pp. 196-211. Belknap Press, Massachusetts. |
[34] | Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. Proceedings of the Royal Society B: Biological Sciences, 271, 113-122. |
[35] | Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proceedings of the National Academy of Sciences, USA, 101, 15136-15141. |
[36] | Huston MA (1994) Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge. |
[37] | IPCC (Intergovernmental Panel on Climate Change) (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge. |
[38] |
Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nature Reviews Microbiology, 18, 35-46.
URL PMID |
[39] |
Jia MQ, Huang J, Yang YH, Han GD, Zhang GG (2019) Effects of simulated nitrogen deposition and precipitation manipulation on soil microorganisms in the desert steppe of Northern China. Revista Brasileira de Ciência do Solo, 43, e0180031.
DOI URL |
[40] |
Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Agren GI, Sebastia MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513, 81-84.
URL PMID |
[41] |
Kim YC, Gao C, Zheng Y, He XH, Yang W, Chen L, Wan SQ, Guo LD (2015) Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza, 25, 267-276.
URL PMID |
[42] |
Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek, 81, 509-520.
URL PMID |
[43] |
Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120.
DOI URL PMID |
[44] |
Li H, Xu ZW, Yang S, Li XB, Top EM, Wang RZ, Zhang YG, Cai JP, Yao F, Han XG, Jiang Y (2016) Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation. Microbial Ecology, 71, 974-989.
DOI URL PMID |
[45] | Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 11, 1941-1955. |
[46] |
Li XL, Zhu TY, Peng F, Chen Q, Lin S, Christie P, Zhang JL (2015) Inner Mongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization. Environmental Microbiology, 17, 3051-3068.
URL PMID |
[47] |
Liang YT, Li GH, Van Nostrand JD, He ZL, Wu LY, Den Y, Zhang X, Zhou JZ (2009) Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiology Ecology, 70, 324-333.
DOI URL PMID |
[48] | Ling N, Chen DM, Guo H, Wei JX, Bai YF, Shen QR, Hu SJ (2017) Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe. Geoderma, 292, 25-33. |
[49] | Lodge DJ (1997) Factors related to diversity of decomposer fungi in tropical forests. Biodiversity and Conservation, 6, 681-688. |
[50] |
Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 480, 368-371.
URL PMID |
[51] |
Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6, 805-814.
DOI URL PMID |
[52] |
Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology, 4, 102-112.
URL PMID |
[53] |
McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim EH, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514, 478-481.
URL PMID |
[54] |
Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature, 409, 1083-1091.
DOI URL PMID |
[55] |
Paula FS, Rodrigues JLM, Zhou JZ, Wu LY, Mueller RC, Mirza BS, Bohannan BJM, Nusslein K, Deng Y, Tiedje JM, Pellizari VH (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology, 23, 2988-2999.
DOI URL PMID |
[56] | Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letter, 18, 85-95. |
[57] |
Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie YL, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu HM, Yu C, Li ST, Jian M, Zhou Y, Li YR, Zhang XQ, Li SG, Qin N, Yang HM, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J, Consortium M (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59-65.
DOI URL PMID |
[58] | Ren CJ, Chen J, Lu XJ, Doughty R, Zhao FZ, Zhong ZK, Han XH, Yang GH, Feng YZ, Ren GX (2018) Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 116, 4-10. |
[59] |
Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890.
URL PMID |
[60] |
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340-1351.
DOI URL PMID |
[61] | Shi Y, Li YT, Xiang XJ, Sun RB, Yang T, He D, Zhang KP, Ni YY, Zhu YG, Adams JM, Chu HY (2018) Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome, 6, 27-38. |
[62] |
Singh BK, Quince C, Macdonald CA, Khachane A, Thomas N, Abu Al-Soud W, Sorensen SJ, He ZL, White D, Sinclair A, Crooks B, Zhou JZ, Campbell CD (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology, 16, 2408-2420.
DOI URL PMID |
[63] | Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, London. |
[64] | Sun LJ, Qi YC, Dong YS, Peng Q, He YT, Liu XC, Jia JQ (2012) Research progress of the effect of global change on soil microbial diversity in the grassland. Progress in Geography, 31, 1715-1723. (in Chinese) |
[ 孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强 (2012) 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 31, 1715-1723.] | |
[65] |
Thakur MP, Geisen S (2019) Trophic regulations of the soil microbiome. Trends in Microbiology, 27, 771-780.
DOI URL PMID |
[66] | Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. |
[67] | Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718-720. |
[68] | van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
[69] | van Dorst J, Siciliano SD, Winsley T, Snape I, Ferrari BC (2014) Bacterial targets as potential indicators of diesel fuel toxicity in subantartic soils. Applied Environment Microbiology, 80, 4021-4033. |
[70] |
Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters, 9, 1127-1135.
DOI URL PMID |
[71] |
Wang C, Liu DW, Bai E (2018) Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 120, 126-133.
DOI URL |
[72] | Wang DL, Wang L, Liu JS, Zhu H, Zhong ZW (2018) Grassland ecology in China: Perspectives and challenges. Frontiers of Agricultural Science and Engineering, 5, 24-43. |
[73] |
Wang XB, Lü XT, Yao J, Wang ZW, Deng Y, Cheng WX, Zhou JZ, Han XG (2017) Habitat-specific patterns and drivers of bacterial beta-diversity in China's drylands. The ISME Journal, 11, 1345-1358.
DOI URL PMID |
[74] | Wu DS (1994) The Atlas of Soil Environmental Background Value in the People’s Republic of China. China Environmental Science Press, Beijing. |
[75] | Xu B, Zhang DY (2014) Progress on the biodiversity of microorganisms: Patterns and processes. Chinese Bulletin of Life Sciences, 26, 144-152. (in Chinese with English abstract) |
[ 徐冰, 张大勇 (2014) 微生物多样性及其分布的研究进展: 模式与过程. 生命科学, 26, 144-152.] | |
[76] | Yu ZH, Hu XJ, Wei D, Liu JJ, Zhou BK, Jin J, Liu XB, Wang GH (2019) Long-term inorganic fertilizer use influences bacterial communities in Mollisols of Northeast China based on high-throughput sequencing and network analyses. Archives of Agronomy and Soil Science, 65, 1331-1340. |
[77] | Zhang CJ, Yang ZL, Shen JP, Sun YF, Wang JT, Han HY, Wan SQ, Zhang LM, He JZ (2018) Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Applied Soil Ecology, 130, 241-250. |
[78] | Zhang HF, Wang LL, Liu HM, Zhao JN, Li G, Wang H, Lai X, Li J, Xiu WM, Yang DL (2018) Nitrogen deposition combined with elevated precipitation is conducive to maintaining the stability of the soil fungal diversity on the Stipa baicalensis steppe. Soil Biology and Biochemistry, 117, 135-138. |
[79] |
Zhang XM, Liu W, Bai YF, Zhang GM, Han XG (2011) Nitrogen deposition mediates the effects and importance of chance in changing biodiversity. Molecular Ecology, 20, 429-438.
DOI URL PMID |
[80] | Zhang XM, Han XG (2012) Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland. Journal of Environmental Sciences, 24, 1483-1491. |
[81] |
Zhang XM, Chen QS, Han XG (2013a) Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS ONE, 8, e84210.
DOI URL PMID |
[82] |
Zhang XM, Liu W, Schloter M, Zhang GM, Chen QS, Huang JH, Li LH, Elser JJ, Han XG (2013b) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS ONE, 8, e76500.
DOI URL PMID |
[83] |
Zhang XM, Zhang GM, Chen QS, Han XG (2013c) Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE, 8, e78616.
DOI URL PMID |
[84] |
Zhang XM, Barberán A, Zhu XZ, Zhang GM, Han XG (2014a) Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem. PLoS ONE, 9, e115798.
DOI URL PMID |
[85] | Zhang XM, Wei HW, Chen QS, Han XG (2014b) The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biology and Biochemistry, 72, 26-34. |
[86] | Zhang XM, Liu W, Zhang GM, Jiang L, Han XG (2015) Mechanisms of soil acidification reducing bacterial diversity. Soil Biology and Biochemistry, 81, 275-281. |
[87] |
Zhang XM, Johnston ER, Liu W, Li LH, Han XG (2016a) Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. Global Change Biology, 22, 198-207.
URL PMID |
[88] | Zhang XM, Pu ZC, Li YH, Han XG (2016b) Stochastic processes play more important roles in driving the dynamics of rarer species. Journal of Plant Ecology, 9, 328-332. |
[89] |
Zhang XM, Johnston ER, Barberán A, Ren Y, Lü XT, Han XG (2017a) Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. Global Change Biology, 23, 4318-4332.
DOI URL PMID |
[90] |
Zhang XM, Johnston ER, Li LH, Konstantinidis KT, Han XG (2017b) Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. The ISME Journal, 11, 885-895.
URL PMID |
[91] |
Zhang XM, Johnston ER, Barberán A, Ren Y, Wang ZP, Han XG (2018) Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environmental Microbiology, 20, 3862-3875.
DOI URL PMID |
[92] |
Zhang XM, Johnston ER, Wang YS, Yu Q, Tian DS, Wang ZP, Zhang YQ, Gong DZ, Luo C, Liu W, Yang JJ, Han XG (2019) Distinct drivers of core and accessory components of soil microbial community functional diversity under environmental changes. mSystems, 4, e00374-19.
DOI URL PMID |
[93] |
Zhou JZ, Deng Y, Shen LN, Wen CQ, Yan QY, Ning DL, Qin YJ, Xue K, Wu LY, He ZL, Voordeckers JW, Van Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide R, Yang YF, Brown JH (2016) Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 7, 12083.
DOI URL PMID |
[94] | Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XH, Fei SF, Deng SP, He ZL, Van Nostrand JD, Luo YQ (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110. |
[95] | Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017) Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 115, 433-441. |
[1] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[2] | 董云伟, 鲍梦幻, 程娇, 陈义永, 杜建国, 高养春, 胡利莎, 李心诚, 刘春龙, 秦耿, 孙进, 王信, 杨光, 张崇良, 张雄, 张宇洋, 张志新, 战爱斌, 贺强, 孙军, 陈彬, 沙忠利, 林强. 中国海洋生物地理学研究进展和热点: 物种分布模型及其应用[J]. 生物多样性, 2024, 32(5): 23453-. |
[3] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[4] | 牛永杰, 马全会, 朱玉, 刘海荣, 吕佳乐, 邹元春, 姜明. 氮沉降对草地昆虫多样性影响的研究进展[J]. 生物多样性, 2023, 31(9): 23130-. |
[5] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[6] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[7] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[8] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[9] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[10] | 程文达, 邢爽, 刘阳. 华莱士在动物体色演化研究中的贡献和当代启示[J]. 生物多样性, 2023, 31(12): 23434-. |
[11] | 宋亮, 吴毅, 胡海霞, 刘文耀, 中村彰宏, 陈亚军, 马克平. 基于塔吊的林冠科学研究进展及展望[J]. 生物多样性, 2023, 31(12): 23363-. |
[12] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[13] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[14] | 彭莳嘉, 罗源, 蔡宏宇, 张晓玲, 王志恒. 全球变化情景下的中国木本植物受威胁物种名录[J]. 生物多样性, 2022, 30(5): 21459-. |
[15] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn