生物多样性 ›› 2018, Vol. 26 ›› Issue (12): 1277-1288. DOI: 10.17520/biods.2018109
刘润1,2, 张朝晖1,2,*(), 申家琛1,2, 王智慧3
收稿日期:
2018-04-12
接受日期:
2018-10-12
出版日期:
2018-12-20
发布日期:
2019-02-11
通讯作者:
张朝晖
作者简介:
# 共同第一作者
基金资助:
Run Liu1,2, Zhaohui Zhang1,2,*(), Jiachen Shen1,2, Zhihui Wang3
Received:
2018-04-12
Accepted:
2018-10-12
Online:
2018-12-20
Published:
2019-02-11
Contact:
Zhang Zhaohui
About author:
# Co-first authors
摘要:
岩溶洞穴的开发与利用导致的重金属污染严重威胁洞穴环境及地下水, 因此对洞穴环境的监测具有重要的现实意义。本文通过对典型的暗河型溶洞贵州织金洞内的苔藓群落特征及其重金属污染状况进行研究, 拟揭示苔藓群落对洞穴重金属污染的指示意义。共发现苔藓群落类型34个, 苔藓植物种类20科33属49种, 含苔类8科8属12种, 藓类12科25属37种。优势科为丛藓科、凤尾藓科和提灯藓科, 物种占比率分别为16%、14%、14%。Hg污染超标倍数最高达59.45倍, 在距洞口不同深度均远高于Cr和Zn, 说明洞内Hg污染较为严重。苔藓群落指标随着重金属污染含量的上升总体呈下降趋势。所测定的重金属中基质Hg含量与苔藓群落指标的拟合程度最好, 与其对应的苔藓群落指标均呈显著负相关关系(P < 0.05), 说明苔藓群落特征能够很好地反映洞内Hg污染的变化趋势。RDA排序结果分析表明: 洞穴苔藓群落为适应低光度环境会表现出向光性运动、喜钙生基质、耐重金属等生理特征。蛇苔(Conocephalum conicum)植物体内的Hg含量与其基质Hg含量具有显著相关性(P < 0.05), 说明蛇苔受基质Hg污染影响较大。在今后的治理过程中, 可以考虑将蛇苔作为洞内环境的生物监测材料之一。
刘润, 张朝晖, 申家琛, 王智慧 (2018) 岩溶洞穴苔藓群落特征及其对重金属污染的指示意义: 以贵州织金洞为例. 生物多样性, 26, 1277-1288. DOI: 10.17520/biods.2018109.
Run Liu, Zhaohui Zhang, Jiachen Shen, Zhihui Wang (2018) Community characteristics of bryophyte in Karst caves and its effect on heavy metal pollution: A case study of Zhijin Cave, Guizhou Province. Biodiversity Science, 26, 1277-1288. DOI: 10.17520/biods.2018109.
距入口深度 Distance to entrance | 样点描述 Plot description | 样方数 No. of plots | Ca含量 Ca content (mg/kg) | 光照 Light (lux) | 坡度 Slope | pH | 湿度 Humidity (%) | 温度 Temperature (℃) |
---|---|---|---|---|---|---|---|---|
80 m | 洞壁钙华基质; 阴湿 Cave wall travertine matrix; wet and damp | 9 | 760,805 | 7.21 | 20° | 7.7 | 87.1 | 14.1 |
60 m | 石上薄土; 阴湿 Thin soil on the stone; wet and damp | 8 | 668,208 | 19.25 | 30° | 7.8 | 96.4 | 13.2 |
40 m | 湿石灰土; 入口大厅最平缓处 Wet lime soi; the most gentle place in the entrance hall | 7 | 284,183 | 36.95 | 6° | 8.0 | 97.0 | 13.7 |
20 m | 入口缓坡 Entrance slope | 8 | 454,343 | 120.5 | 35° | 8.1 | 96.4 | 14.8 |
0 m | 入口内外10 m范围内陡坡 Steep slope within 10 m inside and outside the entrance | 8 | 294,232 | 627 | 50° | 7.9 | 83.1 | 16.9 |
表1 织金洞内5个样点的生境信息及苔藓群落特征
Table 1 Habitat and bryophyte community diversity of five plots in Zhijin Cave
距入口深度 Distance to entrance | 样点描述 Plot description | 样方数 No. of plots | Ca含量 Ca content (mg/kg) | 光照 Light (lux) | 坡度 Slope | pH | 湿度 Humidity (%) | 温度 Temperature (℃) |
---|---|---|---|---|---|---|---|---|
80 m | 洞壁钙华基质; 阴湿 Cave wall travertine matrix; wet and damp | 9 | 760,805 | 7.21 | 20° | 7.7 | 87.1 | 14.1 |
60 m | 石上薄土; 阴湿 Thin soil on the stone; wet and damp | 8 | 668,208 | 19.25 | 30° | 7.8 | 96.4 | 13.2 |
40 m | 湿石灰土; 入口大厅最平缓处 Wet lime soi; the most gentle place in the entrance hall | 7 | 284,183 | 36.95 | 6° | 8.0 | 97.0 | 13.7 |
20 m | 入口缓坡 Entrance slope | 8 | 454,343 | 120.5 | 35° | 8.1 | 96.4 | 14.8 |
0 m | 入口内外10 m范围内陡坡 Steep slope within 10 m inside and outside the entrance | 8 | 294,232 | 627 | 50° | 7.9 | 83.1 | 16.9 |
表2 织金洞苔藓群落类型概况。*表示优势群落; D: 优势种; A: 伴生种。
Table 2 A survey of the community types of bryophytes in Zhijin Cave. * Dominant communities; D, Dominant species; A, Associated species.
距洞口深度 Distance to entrance | 基质铬 Substrate Cr | 基质汞 Substrate Hg | 基质锌 Substrate Zn | 群落丰富度 Community richness | 物种丰富度 Species richness | 多样性指数 Diversity index | |||
---|---|---|---|---|---|---|---|---|---|
含量 Content | 超标倍数 Times of ultra standard | 含量 Content | 超标倍数 Times of ultra standard | 含量 Content | 超标倍数 Times of ultra standard | ||||
80 m | 72.68 ± 0.83d | -0.26 | 0.55 ± 0.01d | 4.00 | 73.7 ± 0.95d | -0.24 | 12 | 26 | 7 |
60 m | 100.41 ± 2.65b | -0.07 | 0.70 ± 0.01d | 5.36 | 92.3 ± 0.95cd | 0.05 | 8 | 15 | 5 |
40 m | 178.54 ± 0.75a | 1.80 | 6.65 ± 0.06a | 59.45 | 278.4 ± 1.45a | 0.86 | 5 | 9 | 3 |
20 m | 97.31 ± 0.82c | 0.24 | 5.83 ± 0.09b | 52.00 | 123.5 ± 1.1c | 0.01 | 4 | 13 | 4 |
0 m | 83.88 ± 1.29d | 1.17 | 3.47 ± 0.06c | 30.55 | 216.3 ± 3.35b | -0.13 | 7 | 16 | 5 |
表3 距洞口不同深度苔藓基质重金属含量(平均值 ± 标准误)/(mg/kg)及其群落指标
Table 3 The content of heavy metal (mean ± SE) (mg/kg) in the substrate of bryophytes at different distance to entrance and it’s community indicators
距洞口深度 Distance to entrance | 基质铬 Substrate Cr | 基质汞 Substrate Hg | 基质锌 Substrate Zn | 群落丰富度 Community richness | 物种丰富度 Species richness | 多样性指数 Diversity index | |||
---|---|---|---|---|---|---|---|---|---|
含量 Content | 超标倍数 Times of ultra standard | 含量 Content | 超标倍数 Times of ultra standard | 含量 Content | 超标倍数 Times of ultra standard | ||||
80 m | 72.68 ± 0.83d | -0.26 | 0.55 ± 0.01d | 4.00 | 73.7 ± 0.95d | -0.24 | 12 | 26 | 7 |
60 m | 100.41 ± 2.65b | -0.07 | 0.70 ± 0.01d | 5.36 | 92.3 ± 0.95cd | 0.05 | 8 | 15 | 5 |
40 m | 178.54 ± 0.75a | 1.80 | 6.65 ± 0.06a | 59.45 | 278.4 ± 1.45a | 0.86 | 5 | 9 | 3 |
20 m | 97.31 ± 0.82c | 0.24 | 5.83 ± 0.09b | 52.00 | 123.5 ± 1.1c | 0.01 | 4 | 13 | 4 |
0 m | 83.88 ± 1.29d | 1.17 | 3.47 ± 0.06c | 30.55 | 216.3 ± 3.35b | -0.13 | 7 | 16 | 5 |
图1 织金洞基质重金属含量与苔藓群落指标的关系(数据进行以10为底的对数转换处理)
Fig. 1 Relationship between heavy metal content in substrate and community indexes of bryophytes in Zhijin Cave. Logarithmic conversion processing based on 10 is carried out on the data.
图2 苔藓优势群落与环境因子的冗余分析排序图。优势群落缩写见表2。图中, 实心箭头代表重金属, 空心箭头代表其他环境因子, 星号代表苔藓优势群落; 箭头长短代表该变量对环境因子影响的大小, 各箭头之间的夹角代表变量之间的相关性, 夹角余弦值代表两变量之间的相关性系数; 苔藓群落与线段之间的连线长短代表群落与环境变量之间的对应关系。
Figs.2 RDA ordination diagram between dominant communityof bryophytes and environmental factors. Abbreviations of dominant communities are shown in Table 2. In the figure, solid arrows represent heavy metals, hollow arrows represent other environmental factors, and asterisks represent dominant bryophyte communities. The length of the arrow represents the magnitude of the influence of the variable on the environmental factors, the included angle between the arrows represents the correlation between the variables, and the cosine value of the included angle represents the correlation coefficient between the two variables;The length of the connection line between bryophyte communities and line segments represents the corresponding relationship between communities and environmental variables.
距洞口深度 Distance entrance | 粗肋凤尾藓 Fissidens laxus | 磷叶藓 Taxiphyllum taxiramum | 尖叶美喙藓 Eurhynchium eustegium | 蛇苔 Conocephalum conicum |
---|---|---|---|---|
80 m | 0.32 | - | - | - |
60 m | 0.14 | 0.47 | 0.43 | - |
40 m | - | - | - | 0.67 |
20 m | 0.18 | - | - | 0.61 |
0 m | 0.27 | 0.58 | 0.59 | - |
均值 Average | 0.23 | 0.53 | 0.51 | 0.64 |
表4 距洞口不同深度苔藓植物体Hg含量(mg/kg)
Table 4 Hg content of bryophytes at different distance to entrance (mg/kg)
距洞口深度 Distance entrance | 粗肋凤尾藓 Fissidens laxus | 磷叶藓 Taxiphyllum taxiramum | 尖叶美喙藓 Eurhynchium eustegium | 蛇苔 Conocephalum conicum |
---|---|---|---|---|
80 m | 0.32 | - | - | - |
60 m | 0.14 | 0.47 | 0.43 | - |
40 m | - | - | - | 0.67 |
20 m | 0.18 | - | - | 0.61 |
0 m | 0.27 | 0.58 | 0.59 | - |
均值 Average | 0.23 | 0.53 | 0.51 | 0.64 |
粗肋凤尾藓 Fissidens laxus | 磷叶藓 Taxiphyllum taxiramum | 尖叶美喙藓 Eurhynchium eustegium | 蛇苔 Conocephalum conicum | |
---|---|---|---|---|
相关性系数 Correlation coefficient | -0.658 | -0.388 | -0.361 | 0.91 |
P | 0.227 | 0.519 | 0.551 | 0.032* |
表5 重金属Hg在不同苔藓植物体和其基质含量中的相关性
Table 5 Correlation of Hg between different bryophytes and their substrate contents
粗肋凤尾藓 Fissidens laxus | 磷叶藓 Taxiphyllum taxiramum | 尖叶美喙藓 Eurhynchium eustegium | 蛇苔 Conocephalum conicum | |
---|---|---|---|---|
相关性系数 Correlation coefficient | -0.658 | -0.388 | -0.361 | 0.91 |
P | 0.227 | 0.519 | 0.551 | 0.032* |
1 | Amaral LDP, Ferreira RA, Lisboa GDS, Longhi SJ, Watzlawick LF (2013) Variabilidade espacial do Índice de Diversidade de Shannon-Wiener em Floresta Ombrófila Mista. Emilio Montero Cartelle, 41, 1961-1972. |
2 | An L, Cao T, Yu YH (2006) Heavy metals contents in Haplocladium and their relationships with Shanghai City environment. Chinese Journal of Applied Ecology, 17, 1490-1494. (in Chinese with English abstract) |
[安丽, 曹同, 俞鹰浩 (2006) 上海市小羽藓属植物重金属含量及其与环境的关系. 应用生态学报, 17, 1490-1494.] | |
3 | Brown DH, Buck GW (2013) Cation contents of acrocarpous and pleurocarpous mosses growing on a strontium-rich substratum. Transactions of the British Bryological Society, 10, 199-209. |
4 | Chen SF, Wu DF, Wu JN (1989) Using lichen communities as SO2 pollution monitors. Journal of Nanjing Normal University (Natural Science), 12(4), 77-82. (in Chinese with English abstract) |
[陈舒泛, 吴鼎福, 吴继农 (1989) 利用地衣群落监测SO2的污染. 南京师大学报(自然科学版), 12(4), 77-82.] | |
5 | Christie JM, Alomon MS, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide. Proceedings of the National Academy of Sciences, USA, 96, 8779-8783. |
6 | Cui RP, Ma XL, Man HS, Yao BJ, Gu WX, Xia QF (1983) Hazard of mercury-stained food chains. Environmental Science, 4(2), 16-19. (in Chinese) |
[崔瑞平, 马秀兰, 满洪升, 姚本基, 顾文兴, 夏其芳 (1983) 汞染食物链的危害. 环境科学, 4(2), 16-19.] | |
7 | Denayer FO, Haluwyn CV, Foucault BD, Schumacker R, Colein P (1999) Use of bryological communities as a diagnostic tool of heavy metal soil contamination (Cd, Pb, Zn) in northern France. Plant Ecology, 140, 191-201. |
8 | Foan L, Domercq M, Bermejo R, Santamaría JM, Simon V (2015) Mosses as an integrating tool for monitoring PAH atmospheric deposition: Comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study. Chemosphere, 119, 452-458. |
9 | Gao Q (1996) Flora Bryophytorum Sinicorum, Vol. 2. Science Press, Beijing. (in Chinese) |
[高谦 (1996) 中国苔藓志第二卷. 科学出版社, 北京.] | |
10 | Gao Q, Wu YH (2010) Genera Hepaticopsida et Anthocerotopsida Sinicorum. Science Press, Beijing. (in Chinese) |
[高谦, 吴玉环 (2010) 中国苔纲和角苔纲植物属志. 科学出版社, 北京.] | |
11 | Giordano S, Adamo P, Spagnuolo V, Tretiach M, Bargagli R (2013) Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: Towards a harmonisation of the moss-bag technique. Chemosphere, 90, 292-299. |
12 | Guo SL, Yu J, Chen GQ (2015) Ecological Data Analyses. Science Press, Beijing. (in Chinese) |
[郭水良, 于晶, 陈国奇 (2015) 生态学数据分析. 科学出版社, 北京.] | |
13 | Guo Y, Wang ZH, Zhang ZH (2017) Ability of brachymenium exile to monitor metal elements at an electrolytic aluminium factory in karst mountainous area. Environmental Science & Technology, 40(3), 148-152. (in Chinese with English abstract) |
[郭云, 王智慧, 张朝晖 (2017) 岩溶山区电解铝厂纤枝短月藓对金属元素的监测能力. 环境科学与技术, 40(3), 148-152.] | |
14 | Hu RL, Wang YF (2005) Flora Bryophytorum Sinicorum, Vol. 7. Science Press, Beijing. (in Chinese) |
[胡人亮, 王幼芳 (2005) 中国苔藓志第七卷. 科学出版社, 北京.] | |
15 | Li DH (2006) Study on correlation between fauna structure and some environmental factors in Shuiba Cave, Guizhou Province. Carsologica Sinica, 25, 256-262. (in Chinese with English abstract) |
[黎道洪 (2006) 贵州水拔洞内动物群落结构与部分环境因子的相关性研究. 中国岩溶, 25, 256-262.] | |
16 | Li JY, An YG, Rong KF (1991) Forming and developing process of underground stream caves—Zhijin Cave, etc. as examples. Journal of Guizhou Institute of Technology, 20(3), 1-9. (in Chinese with English abstract) |
[李景阳, 安裕国, 戎昆方 (1991) 暗河型溶洞的形成和演化过程——以贵州织金洞等为例. 贵州工学院学报, 20(3), 1-9.] | |
17 | Li XJ (2006) Flora Bryophytorum Sinicorum, Vol. 4. Science Press, Beijing. (in Chinese) |
[黎兴江 (2006) 中国苔藓志第四卷. 科学出版社, 北京.] | |
18 | Liu R, Zhang ZH, Shen JC, Wang ZH (2018) Monitoring of heavy metal concentrations and source apportionment in “24-Curve” Highway region using epiphytic mosses. Chinese Journal of Ecology, 37, 1723-1729. (in Chinese with English abstract) |
[刘润, 张朝晖, 申家琛, 王智慧 (2018) 应用树附生藓类监测晴隆二十四道拐地区重金属污染及来源. 生态学杂志, 37, 1723-1729.] | |
19 | Liu RX, Wang ZH, Zhang ZH (2009) Ecological characteristics of bryophyte communities from karst rock desertification peak cluster in Zhenfeng of Guizhou Province. Bulletin of Botanical Research, 29, 734-741. (in Chinese with English abstract) |
[刘荣相, 王智慧, 张朝晖 (2009) 贵州贞丰喀斯特石漠峰丛苔藓植物群落生态特征. 植物研究, 29, 734-741.] | |
20 | Liu RX, Wang ZH, Zhang ZH (2011) Ecological monitoring of bryophytes for mercury pollution in Danzhai mercury mine area, Guizhou Province, China. Acta Ecologica Sinica, 31, 1558-1566. (in Chinese with English abstract) |
[刘荣相, 王智慧, 张朝晖 (2011) 苔藓植物对贵州丹寨汞矿区汞污染的生态监测. 生态学报, 31, 1558-1566.] | |
21 | Long CB, Zhang ZH (2016) Diversity of the bryophytes and their function in monitoring metal contamination in the karst bauxite area in Guangxi. Journal of Safety & Environment, 16, 358-363. (in Chinese with English abstract) |
[龙朝波, 张朝晖 (2016) 平果岩溶型铝土矿区苔藓多样性及对金属污染的监测指示. 安全与环境学报, 16, 358-363.] | |
22 | Mario S, Bitetti D (2000) The distribution of grooming among female primates: Testing hypotheses with the Shannon- Wiener diversity index. Behaviour, 137, 1517-1540. |
23 | Mazur Z, Radziemska M, Maczuga O, Makuch A (2013) Heavy metal concentrations in soil and moss (Pleurozium schreberi) near railroad lines in Olsztyn (Poland). Fresenius Environmental Bulletin, 22, 955-961. |
24 | Peng SL (1987) Ecological dominance of the subtropical forest communities in Guangdong. Acta Ecologica Sinica, 7, 38-44. (in Chinese with English abstract) |
[彭少麟 (1987) 广东亚热带森林群落的生态优势度. 生态学报, 7, 38-44.] | |
25 | Samecka-Cymerman A, Kempers AJ (1998) Bioindication of gold by aquatic bryophytes. Acta Hydrochimica et Hydrobiologica, 26, 90-94. |
26 | Shah TA, Ali A (2010) Development of mercury resistant transgenic Nicotiana plants and their environmental impacts. International Journal of Plant Sciences, 5, 448-451. |
27 | Shen JC, Zhang ZH, Wang HH, Huang H, Wang ZH (2017) Water retention capacity of autumn mosses in south stone forest of Guiyang Karst park. Journal of Ecology & Rural Environment, 33, 907-912. (in Chinese with English abstract) |
[申家琛, 张朝晖, 王慧慧, 黄欢, 王智慧 (2017) 贵阳喀斯特公园南石林秋季藓类植物的持水特性. 生态与农村环境学报, 33, 907-912.] | |
28 | State Environmental Protection Bureau(1990) Background Value of Soil Environment in China. China Environmental Science Press, Beijing (in Chinese) |
[国家环境保护局(1990) 中国土壤环境背景值. 中国环境科学出版社, 北京.] | |
29 | Tarkowska-Kukuryk M, Mieczan T (2014) Distribution and environmental determinants of Chironomids (Diptera, Chironomidae) in Sphagnum microhabitats. Polish Journal of Environmental Studies, 23, 483-490. |
30 | Toth T, Kopernicka M, Sabo R, Kopernicka T (2016) The evaluation of mercury in honey bees and their products from Eastern Slovakia. Scientific Papers Animal Science & Biotechnologies, 49, 257-260. |
31 | Wang AY, Huang SS, Zhong GF, Xu GB, L ZX, Shen XB (2012) Effect of cr (VI) stress on growth of three herbaceous plants and their cr uptake. Environmental Science, 33, 2028-2037. (in Chinese with English abstract) |
[王爱云, 黄姗姗, 钟国锋, 徐刚标, 刘志祥, 申响保 (2012) 铬胁迫对3种草本植物生长及铬积累的影响. 环境科学, 33, 2028-2037.] | |
32 | Wang CX, Li YY, Xu SQ (2010) Biological monitoring and its application in environmental monitoring. Asian Journal of Ecotoxicology, 5, 628-638. (in Chinese with English abstract) |
[王春香, 李媛媛, 徐顺清 (2010) 生物监测及其在环境监测中的应用. 生态毒理学报, 5, 628-638.] | |
33 | Wang SQ, Zhang ZH, Wang ZH (2015) Bryophyte communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China. Science of the Total Environment, 538, 270-278. |
34 | Wei XP, Pu JB, Zhao CY (2014) Assessment of karst groundwater vulnerability in Chongqing based on revised RISKE model. Acta Ecologica Sinica, 34, 589-596. (in Chinese with English abstract) |
[魏兴萍, 蒲俊兵, 赵纯勇 (2014) 基于修正RISKE模型的重庆岩溶地区地下水脆弱性评价. 生态学报, 34, 589-596.] | |
35 | Wu PC (2002) Flora Bryophytorum Sinicorum, Vol. 6. Science Press, Beijing. (in Chinese) |
[吴鹏程 (2002) 中国苔藓志第六卷. 科学出版社, 北京.] | |
36 | Wu PC, Jia Y (2004) Flora Bryophytorum Sinicorum, Vol. 8. Science Press, Beijing. (in Chinese) |
[吴鹏程, 贾渝 (2004) 中国苔藓志第八卷. 科学出版社, 北京.] | |
37 | Xu CX, Li ZZ, Li DH (2013) Relationships between the diversity of animal communities and the lighting environment and content of heavy metals in soils in Guizhou Zhijin Cave. Biodiversity Science, 21, 62-70. (in Chinese with English abstract) |
[徐承香, 李子忠, 黎道洪 (2013) 贵州织金洞洞穴动物群落多样性与光照强度及土壤重金属含量的关系. 生物多样性, 21, 62-70.] | |
38 | Xu MQ, Cao H (2004) Ecological basis and application of PFU protozoan community in bio-monitoring with relation to water quality. Acta Ecologica Sinica, 24, 1540-1547. (in Chinese with English abstract) |
[许木启, 曹宏 (2004) PFU原生动物群落生物监测的生态学原理与应用. 生态学报, 24, 1540-1547.] | |
39 | Xu SC, Cao T, Yu J, Chen Y, Song GY (2006) Niche of epiphytic bryophytes on trees in Shanghai City. Chinese Journal of Ecology, 25, 1338-1343. (in Chinese with English abstract) |
[徐晟翀, 曹同, 于晶, 陈怡, 宋国元 (2006) 上海市树附生苔藓植物生态位. 生态学杂志, 25, 1338-1343.] | |
40 | Xu YN, Ke HL, Zhao AN, Liu RP, Zhang JH (2007) Assessment of heavy metals contamination of farmland soils in some gold mining area of Xiaoqinling. Chinese Journal of Soil Science, 38, 732-736. (in Chinese with English abstract) |
[徐友宁, 柯海玲, 赵阿宁, 刘瑞平, 张江华 (2007) 小秦岭某金矿区农田土壤重金属污染评价. 土壤通报, 38, 732-736.] | |
41 | Yang WC, Li DH (2010) Correlations of heavy metal contents in cave animals and in environment in Dayan Cave of Guangxi. Chinese Journal of Ecology, 29, 1554-1558. (in Chinese with English abstract) |
[杨卫诚, 黎道洪 (2010) 广西大岩洞洞穴动物体与环境中重金属含量关系. 生态学杂志, 29, 1554-1558.] | |
42 | Zhang BK, Fu Z, Wang QS, Yin CL, Zhu QQ (1983) Soil zinc supply and zinc fertilizer yield increase in Nantong City. Soils, 15, 94-101. (in Chinese) |
[张炳奎, 傅棻, 王岐山, 尹楚良, 朱其清 (1983) 南通市土壤锌的供给情况及锌肥的增产作用. 土壤, 15, 94-101.] | |
43 | Zhang YY (2015) Experimental Study on the Effects of Different Light and Iron Concentrations on the Growth of Phytoplankton in Xiaoxingkai Lake. PhD dissertation, Northeast Forestry University, Harbin. (in Chinese with English abstract) |
[张莹莹 (2015) 不同光照和铁浓度对小兴凯湖浮游植物生长影响的实验研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
44 | Zhang ZH, Pentecost A (2002) The floristic characteristics of the bryophytes and karst depostion in karst caves, England. Acta Botanica Boreali-Occidentalia Sinica, 22, 359-367. (in Chinese with English abstract) |
[张朝晖, Pentecost A (2002) 英格兰洞穴苔藓植物区系特征及其岩溶沉积研究. 西北植物学报, 22, 359-367.] | |
45 | Zhang ZH, Wang ZH, Zhu A (1996) A preliminary study on bryokarst of caves in Huangguoshu area. Carsologica Sinica, 15, 224-232. (in Chinese with English abstract) |
[张朝晖, 王智慧, 祝安 (1996) 黄果树喀斯特洞穴群苔藓植物岩溶的初步研究. 中国岩溶, 15, 224-232.] |
[1] | 鲁彬悦, 李坤, 王晨溪, 李晟. 基于传感器标记的野生动物追踪技术在中国的应用现状与展望[J]. 生物多样性, 2024, 32(5): 23497-. |
[2] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[3] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[4] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[5] | 陈景轩, 周佳俊, 刘宝权. 浙江海域海龟记录及其种群现状[J]. 生物多样性, 2023, 31(6): 23082-. |
[6] | 李苗, 要晨阳, 陈小勇. 环境RNA技术在水生生物监测中的应用[J]. 生物多样性, 2023, 31(5): 23062-. |
[7] | 李珍珍, 杜梦甜, 朱原辛, 王大伟, 李治霖, 王天明. 基于红外相机的不可个体识别动物种群密度估算方法[J]. 生物多样性, 2023, 31(3): 22422-. |
[8] | 肖文宏, 李学友, 权锐昌, 连新明, 李明, 聂永刚, 向左甫, 杨维康, 徐峰, 王杰, 周岐海, 范朋飞, 杨锡福, 刘伟, 孙悦华, 张礼标, 黄志旁, 黄华, 范宗骥, 肖治术. 中国兽类多样性监测与研究网络建设: 十年回顾与展望[J]. 生物多样性, 2023, 31(12): 23326-. |
[9] | 徐学红, 王巍伟, 米湘成, 陈磊, 马克平. 中国森林生物多样性监测网络(CForBio): 二十年进展与展望[J]. 生物多样性, 2023, 31(12): 23354-. |
[10] | 李成, 江建平, 谢锋, 赵天, 车静, 李义明, 杜卫国, 杨维康, 徐峰. 中国两栖爬行动物多样性监测进展与展望[J]. 生物多样性, 2023, 31(12): 23382-. |
[11] | 高欣, 赵亚辉, 田菲, 王晓爱, 黎明政, 林鹏程, 常涛, 俞丹, 刘焕章. 中国内陆水体鱼类多样性监测专项网的监测和研究进展[J]. 生物多样性, 2023, 31(12): 23427-. |
[12] | 谢致敬, 刘相钰, 孙晓铭, 刘继亮, 刘占锋, 张晓珂, 陈军, 杨效东, 朱波, 柯欣, 吴东辉. 中国土壤动物多样性监测网络建设、进展与展望[J]. 生物多样性, 2023, 31(12): 23365-. |
[13] | 杨涛, 沈泽昊, 王晓凤, 饶杰生, 刘文聪, 田希, 陈稀, 张秋雨, 刘倩, 钱恒君, 解宇阳, 刘其明, 徐衍潇, 涂梦灵, 单子铭, 张玉坤, 侯波, 李建斌, 欧晓昆. 滇中高原亚热带半湿润常绿阔叶林植物群落多样性特征[J]. 生物多样性, 2023, 31(11): 23238-. |
[14] | 王晓凤, 米湘成, 王希华, 江明喜, 杨涛, 张健, 沈泽昊. 中国中亚热带常绿阔叶林群落木本植物多样性比较[J]. 生物多样性, 2023, 31(11): 23296-. |
[15] | 边琦, 王成, 程贺, 韩丹, 赵伊琳, 殷鲁秦. 声学指数在城市森林鸟类多样性评估中的应用[J]. 生物多样性, 2023, 31(1): 22080-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn