生物多样性 ›› 2010, Vol. 18 ›› Issue (6): 615-621. DOI: 10.3724/SP.J.2010.615
所属专题: 外来物种入侵:机制、影响与防控; 生物入侵
收稿日期:
2010-04-22
接受日期:
2010-09-26
出版日期:
2010-11-20
发布日期:
2011-01-31
通讯作者:
陈家宽
作者简介:
*E-mail: jkchen@fudan.edu.cn基金资助:
Kun Wang, Ji Yang, Jiakuan Chen*()
Received:
2010-04-22
Accepted:
2010-09-26
Online:
2010-11-20
Published:
2011-01-31
Contact:
Jiakuan Chen
摘要:
喜旱莲子草(Alternanthera philoxeroides)入侵已在中国造成巨大的生态和经济损失。为揭示喜旱莲子草成功入侵的生态机制并预测其种群扩张趋势及其与环境因子的关系, 作者比较了喜旱莲子草与其同属的外来弱入侵种刺花莲子草(A. pungens)以及土著种莲子草(A. sessilis)在不同土壤水分、养分条件下的生长状况。结果显示: 在高水高肥条件下, 喜旱莲子草的生物量要高于刺花莲子草和莲子草, 而在低水低肥条件下却不如这两个同属种; 弱入侵种刺花莲子草在低水条件下的生物量要高于强入侵种喜旱莲子草和土著种莲子草, 说明植物的入侵性受环境条件的影响。另外, 强入侵种喜旱莲子草形态学性状的可塑性较高, 在各种条件下都具有较高的比叶面积, 暗示这两个指标可作为莲子草属外来植物入侵性的预测指标。
王坤, 杨继, 陈家宽 (2010) 不同土壤水分和养分条件下喜旱莲子草与同属种生长状况的比较研究. 生物多样性, 18, 615-621. DOI: 10.3724/SP.J.2010.615.
Kun Wang, Ji Yang, Jiakuan Chen (2010) Comparison of morphological traits between alligator weed and two congeners under different water and nutrient conditions. Biodiversity Science, 18, 615-621. DOI: 10.3724/SP.J.2010.615.
图1 不同土壤水分、营养条件下喜旱莲子草、刺花莲子草和莲子草3个物种的生物量。不同小写字母表示在同一土壤条件下物种之间差异显著(P<0.05)。
Fig. 1 Effects of environmental factors on biomass of three studied species, Alternanthera philoxeroides, A. pungens and A. sessilis. Different small letters indicate significant differences (P<0.05) among species in the same soil condition.
性状 Traits | 数据 转换 Data trans | 物种 Species | 水分 Water availability | 营养 Nutrient level | 物种×水分 Species×water | 物种×营养 Species×nutrient | 水分×营养 Water×nutrient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | |||||||
生物量 Biomass | -- | 21.089 | 0.000 | 658.408 | 0.000 | 3451.420 | 0.000 | 179.623 | 0.000 | 103.106 | 0.000 | 67.504 | 0.000 | |||||
比叶面积 SLA | -- | 87.535 | 0.000 | 3.208 | 0.000 | 13.020 | 0.000 | 2.971 | 0.000 | 0.151 | 0.000 | 5.727 | 0.018 | |||||
叶面积 Leaf area | -- | 20.714 | 0.000 | 382.271 | 0.000 | 1236.911 | 0.000 | 13.553 | 0.000 | 15.485 | 0.000 | 0.483 | 0.489 | |||||
叶质量 Leaf mass | $\sqrt{x}$ | 87.931 | 0.000 | 180.221 | 0.000 | 503.897 | 0.000 | 0.881 | 0.418 | 6.235 | 0.000 | 0.389 | 0.534 | |||||
节间长 Internode length | log(x) | 404.691 | 0.000 | 205.384 | 0.000 | 219.201 | 0.000 | 44.146 | 0.000 | 14.689 | 0.000 | 3.376 | 0.069 | |||||
茎直径 Stem diameter | Log(x) | 508.679 | 0.000 | 237.240 | 0.000 | 260.662 | 0.000 | 51.080 | 0.000 | 19.651 | 0.003 | 3.685 | 0.058 |
表1 物种(n = 3)、水分(n = 2)、营养(n = 2)对莲子草属植物性状的影响(三因子方差分析)
Table 1 Effects of species (n = 3), water availability (n = 2) and nutrient levels (n = 2) on traits of three Alternanthera species (Three-way ANOVA)
性状 Traits | 数据 转换 Data trans | 物种 Species | 水分 Water availability | 营养 Nutrient level | 物种×水分 Species×water | 物种×营养 Species×nutrient | 水分×营养 Water×nutrient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | |||||||
生物量 Biomass | -- | 21.089 | 0.000 | 658.408 | 0.000 | 3451.420 | 0.000 | 179.623 | 0.000 | 103.106 | 0.000 | 67.504 | 0.000 | |||||
比叶面积 SLA | -- | 87.535 | 0.000 | 3.208 | 0.000 | 13.020 | 0.000 | 2.971 | 0.000 | 0.151 | 0.000 | 5.727 | 0.018 | |||||
叶面积 Leaf area | -- | 20.714 | 0.000 | 382.271 | 0.000 | 1236.911 | 0.000 | 13.553 | 0.000 | 15.485 | 0.000 | 0.483 | 0.489 | |||||
叶质量 Leaf mass | $\sqrt{x}$ | 87.931 | 0.000 | 180.221 | 0.000 | 503.897 | 0.000 | 0.881 | 0.418 | 6.235 | 0.000 | 0.389 | 0.534 | |||||
节间长 Internode length | log(x) | 404.691 | 0.000 | 205.384 | 0.000 | 219.201 | 0.000 | 44.146 | 0.000 | 14.689 | 0.000 | 3.376 | 0.069 | |||||
茎直径 Stem diameter | Log(x) | 508.679 | 0.000 | 237.240 | 0.000 | 260.662 | 0.000 | 51.080 | 0.000 | 19.651 | 0.003 | 3.685 | 0.058 |
图2 喜旱莲子草、刺花莲子草和莲子草3个物种叶面积、叶质量、节间长、茎直径在不同土壤水分、营养条件下的表现差异
Fig. 2 Difference in leaf size, leaf weight, length of internodes and stem diameter of Alternanthera philoxeroides, A. pungens and A. sessilis among different environmental conditions.
喜旱莲子草 A. philoxeroides | 刺花莲子草 A. pungens | 莲子草 A. sessilis | |
---|---|---|---|
叶面积 Leaf area | 0.621 | 0.519 | 0.468 |
叶质量 Leaf mass | 0.592 | 0.462 | 0.454 |
节间长 Internode length | 0.639 | 0.357 | 0.293 |
茎直径 Stem diameter | 0.597 | 0.573 | 0.389 |
表2 喜旱莲子草、刺花莲子草和莲子草3个物种形态学指标的可塑性指数
Table 2 Values of phenotypic plasticity of three species, Alternanthera philoxeroides, A. pungens and A. sessilis
喜旱莲子草 A. philoxeroides | 刺花莲子草 A. pungens | 莲子草 A. sessilis | |
---|---|---|---|
叶面积 Leaf area | 0.621 | 0.519 | 0.468 |
叶质量 Leaf mass | 0.592 | 0.462 | 0.454 |
节间长 Internode length | 0.639 | 0.357 | 0.293 |
茎直径 Stem diameter | 0.597 | 0.573 | 0.389 |
图3 不同土壤水分、营养条件下喜旱莲子草、刺花莲子草和莲子草3个物种的比叶面积。不同小写字母代表在同一土壤条件下物种之间差异显著(P<0.05)。
Fig. 3 Specific leaf area (SLA) of three studied species in different soil conditions. Different small letters indicate significant differences (P< 0.05) among species in the same soil condition, Alternanthera philoxeroides, A. pungens and A. sessilis.
[1] | Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecology Letters, 6, 712-715. |
[2] | Baret S, Maurice S, Le Bourgeois T, Strasberg D (2004) Altitudinal variation in fertility and vegetative growth in the invasive plant Rubus alceifolius Poiret (Rosaceae), on Reunion Island. Plant Ecology, 172, 265-273. |
[3] | Bellingham PJ, Duncan RP, Lee WG, Buxton RP (2004) Seedling growth rate and survival do not predict invasiveness in naturalized woody plants in New Zealand. Oikos, 106, 308-316. |
[4] |
Burns JH (2004) A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions, 10, 387-397.
DOI URL |
[5] | Burns JH (2006) Relatedness and environment affect traits associated with invasive and non-invasive introduced Commelinaceae. Ecological Applications, 16, 1367-1376. |
[6] | Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology Evolution and Systematics, 34, 183-211. |
[7] |
Feng YL (2008) Photosynthesis, nitrogen allocation and specific leaf area in invasive Eupatorium adenophorum and native Eupatorium japonicum grown at different irradiances. Physiologia Plantarum, 133, 318-326.
URL PMID |
[8] |
Feng YL, Fu GL, Zheng YL (2008) Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
DOI URL PMID |
[9] | Garland T, Adolph SC (1994) Why not to do two-species comparative studies: limitations on inferring adaptation. Physiological Zoology, 67, 797-828. |
[10] | Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2006) Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecologica, 30, 380-385. |
[11] | Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2007) Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecological Research, 22, 255-260. |
[12] | Gerlach JD, Rice KJ (2003) Testing life history correlates of invasiveness using congenetic plant species. Ecological Applications, 13, 167-179. |
[13] |
Grotkopp E, Rejmanek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine ( Pinus) species. The American Naturalist, 159, 396-419.
URL PMID |
[14] | Grotkopp E, Rejmanek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. American Journal of Botany, 94, 526-532. |
[15] | Hwang BC, Lauenroth WK (2008) Effect of nitrogen, water and neighbor density on the growth of Hesperis matronalis and two native perennials. Biological Invasions, 10, 771-779. |
[16] | Julien M, Skarratt B, Maywald GF (1995) Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. Journal of Aquatic Plant Management, 33, 55-60. |
[17] | Kong XW (孔宪武), Jian ZP (简焯坡) (1979) Chenopodiaceae and Amaranthaceae. In: Flora Reipublicae Popularis Sinicae, Tomus 25(2) (中国植物志第25卷第2分册) (ed. Delectis Florae Reipublicae Popularis Sinicae Agendae Academicae Sinicae Edita (中国科学院中国植物志编辑委员会), pp. 234-236. Science Press, Beijing. (in Chinese) |
[18] | Leicht-Young SA, Silander JA, Latimer AM (2007) Comparative performance of invasive and native Celastrus species across environmental gradients. Oecologia, 154, 273-282. |
[19] | Li B (李博), Chen JK (陈家宽) (2002) Ecology of biological invasions: achievements and challenges. World Science- Technology Research & Development (世界科技研究与发展), 24(2), 26-36. (in Chinese with English abstract) |
[20] | Li MC (李明财), Zhu JJ (朱教君), Sun YR (孙一荣) (2009) Responses of specific leaf area of dominant tree species in Northeast China secondary forests to light intensity. Chinese Journal of Ecology (生态学杂志), 28, 1437-1442. (in Chinese with English abstract) |
[21] | Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689-710. |
[22] | Pan XY, Geng YP, Xu CY, Zhang WJ, Li B, Chen JK (2006) The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica, 30, 333-341. |
[23] | Pan XY (潘晓云), Geng YP (耿宇鹏), Sosa AJ, Zhang WJ (张文驹), Li B (李博), Chen JK (陈家宽) (2007) Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 45, 884-900. (in Chinese with English abstract) |
[24] | Rejmanek M, Richardson DV (1996) What attributes make some plant species more invasive? Ecology, 77, 1655-1661. |
[25] |
Thompson JD (1991) The biology of an invasive plant: what makes Spartina anglica so successful. BioScience, 41, 393-401.
DOI URL |
[26] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936. |
[27] | Wang K (王坤), Yang J (杨继), Chen JK (陈家宽) (2009) The applications of congeneric comparisons in plant invasion ecology. Biodiversity Science (生物多样性), 17, 353-361. (in Chinese with English abstract) |
[28] | Williams DG, Mack RN, Black RA (1995) Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology, 6, 1569-1580. |
[29] | Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543. |
[30] | Wu XC (吴晓成), Zhang QL (张秋良), Zang RG (臧润国), Lei QZ (雷庆哲) (2009) Leaf area index and specific leaf area of natural poplars in Ergis Basin. Journal of Northwest Forestry University (西北林业大学学报), 24, 10-15. (in Chinese with English abstract) |
[31] |
Zheng YL, Feng YL, Liu WX, Liao ZY (2009) Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology, 203, 263-271.
DOI URL |
[1] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[2] | 吴浩, 余玉蓉, 王佳钰, 赵媛博, 高娅菲, 李小玲, 卜贵军, 薛丹, 吴林. 低水位增加灌木多样性和生物量但降低土壤有机碳含量: 以鄂西南贫营养泥炭地为例[J]. 生物多样性, 2023, 31(3): 22600-. |
[3] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[4] | 周欣扬, 王誉陶, 李建平. 黄土高原典型草原植物群落组成对降水变化的响应[J]. 生物多样性, 2023, 31(3): 22118-. |
[5] | 邓铭先, 黄河燕, 沈诗韵, 吴纪华, 拉琼, 斯确多吉, 潘晓云. 喜旱莲子草在青藏高原对模拟增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(9): 1198-1205. |
[6] | 欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6): 746-758. |
[7] | 王爱霞, 马婧婧, 龚会蝶, 范国安, 王茂, 赵红梅, 程军回. 北疆一年生早春短命植物物种丰富度分布格局及其影响因素[J]. 生物多样性, 2021, 29(6): 735-745. |
[8] | 黄河燕, 朱政财, 吴纪华, 拉琼, 周永洪, 潘晓云. 喜旱莲子草对模拟全天增温的可塑性: 引入地和原产地种群的比较[J]. 生物多样性, 2021, 29(4): 419-427. |
[9] | 朱杰, 吴安驰, 邹顺, 熊鑫, 刘世忠, 褚国伟, 张倩媚, 刘菊秀, 唐旭利, 闫俊华, 张德强, 周国逸. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29(11): 1435-1446. |
[10] | 于良瑞, 朱政财, 潘晓云. 喜旱莲子草对同基因型邻体根系的表型可塑性: 入侵地和原产地的比较[J]. 生物多样性, 2020, 28(6): 651-657. |
[11] | 陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强. 基于功能性状的水杉原生母树种群生境适应策略[J]. 生物多样性, 2020, 28(3): 296-302. |
[12] | 张田田, 王璇, 任海保, 余建平, 金毅, 钱海源, 宋小友, 马克平, 于明坚. 浙江古田山次生与老龄常绿阔叶林群落特征的比较[J]. 生物多样性, 2019, 27(10): 1069-1080. |
[13] | 宋瑞玲, 王昊, 张迪, 吕植, 朱子云, 张璐, 刘炎林, 才文公保, 吴岚. 基于MODIS-EVI评估三江源高寒草地的保护成效[J]. 生物多样性, 2018, 26(2): 149-157. |
[14] | 潘玉梅, 唐赛春, 韦春强, 李象钦. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较[J]. 生物多样性, 2017, 25(12): 1257-1266. |
[15] | 谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10): 1054-1064. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn