生物多样性 ›› 2017, Vol. 25 ›› Issue (4): 418-426. DOI: 10.17520/biods.2017015
收稿日期:
2017-01-13
接受日期:
2017-03-15
出版日期:
2017-04-20
发布日期:
2017-04-20
通讯作者:
路安民
基金资助:
Wei Wang1,2, Xiaoxia Zhang1,2, Zhiduan Chen1, Anming Lu1,*()
Received:
2017-01-13
Accepted:
2017-03-15
Online:
2017-04-20
Published:
2017-04-20
Contact:
Lu Anming
摘要:
随着植物分子系统学的兴起, 被子植物系统发育研究取得了举世瞩目的进展。被子植物系统发育组提出了基于DNA证据的被子植物在目、科分类阶元上的分类系统, 简称APG系统。本文简要概括了APG系统的主要成就: (1)验证了被子植物分类系统的可重复性和可预言性; (2)解决了一些依据形态学性状未能确定的类群的系统位置; (3)证明了将被子植物一级分类分为双子叶植物和单子叶植物的不自然性; (4)证实了单沟花粉和三沟花粉在被子植物高级分类单元划分中的重要性; (5)发现雄蕊的向心发育和离心发育在多雄蕊类群中是多次发生的, 不应作为划分纲或亚纲的重要依据; (6)支持基于形态学(广义)性状划分的大多数科是自然的; (7)将一些长期认为自然的科四分五裂。同时, 我们指出了尚需深入研究的几个问题: (1)如何将以分子数据建立的系统和以综合形态学证据建立的系统相协调; (2)依据APG系统的研究结果需要创立新的形态演化理论; (3)只以“单系群”作为划分科、目的依据值得商榷; (4)APG系统中一些目的分类没有可信的形态学共衍征; (5)依据APG系统需要做出一个自然系统的目、科检索表和目、科的特征集要。此外, 我们对以亚洲, 特别是东亚为分布中心的一些类群的系统关系或分类等级提出建议, 包括八角科、芒苞草科、水青树科、火筒树科、马尾树科、七叶树科、槭树科、伯乐树科应独立为科, 山茱萸科(广义)应分为山茱萸科(狭义)和蓝果树科(广义)。
王伟, 张晓霞, 陈之端, 路安民 (2017) 被子植物APG分类系统评论. 生物多样性, 25, 418-426. DOI: 10.17520/biods.2017015.
Wei Wang, Xiaoxia Zhang, Zhiduan Chen, Anming Lu (2017) Comments on the APG’s classification of angiosperms. Biodiversity Science, 25, 418-426. DOI: 10.17520/biods.2017015.
图1 被子植物APG IV (2016)系统的目间系统关系。虚线表示核/线粒体树与叶绿体树冲突; 标灰色的目含有多雄蕊离心发育的类群; 花粉和子叶性状标在系统树的右边。
Fig. 1 Interrelationships of the APG IV (2016) orders of angiosperms. The dotted lines indicate the conflicting placements between nuclear/mitochondrial and chloroplast trees. The orders with the gray contain at least one taxon with multiple centrifugal development stamens. Pollen and cotyledonal characters are labeled on the right.
图2 比较APG IV (2016)系统与Takhtajan (2009)系统中金虎尾目的范围。括号中的数字示Takhtajan (2009)系统中目的序号。
Fig. 2 Comparison of the circumscription of Malpighiales between the APG IV (2016) and Takhtajan (2009) systems. The numbers in brackets indicate the serial numbers of the orders of Takhtajan (2009).
图3 比较APG IV(2016)系统与Takhtajan(2009)系统中虎耳草目的范围。锁阳科的位置根据Bellot等(2016)的结果。括号中的数字示Takhtajan(2009)系统中目的序号。
Fig. 3 Comparison of the circumscription of Saxifragales between the APG IV (2016) and Takhtajan (2009) systems. The placement of Cynomoriaceae is based on the result of Bellot et al (2016). The numbers in brackets indicate the serial numbers of the orders of Takhtajan (2009).
1 | APG (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden, 85, 531-553. |
2 | APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141, 399-436. |
3 | APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. |
4 | APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20. |
5 | Bellot S, Cusimano N, Luo S, Sun G, Zarre S, Gröger A, Temsch E, Renner S (2016) Assembled plastid and mitochondrial genomes, as well as nuclear genes, place the parasite family Cynomoriaceae in the Saxifragales. Genome Biology and Evolution, 8, 2214-2230. |
6 | Cardinal-McTeague WM, Sytsma KJ, Hall JC (2016) Biogeography and diversification of Brassicales: a 103 million year tale. Molecular Phylogenetics and Evolution, 99, 204-224. |
7 | Carlsward BS, Judd WS, Soltis DE, Manchester S, Soltis PS (2011) Putative morphological synapomorphies of Saxifragales and their major subclades. Journal of the Botanical Research Institute of Texas, 5, 179-196. |
8 | Chase MW, Fay MF, Savolainen V (2000) Higher-level classification in the angiosperms: new insights from the perspective of DNA sequence data. Taxon, 49, 685-704. |
9 | Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price R, Hills HG, Qiu Y-L, Kron KA, Retting JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham S, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden, 80, 528-580. |
10 | Chen ZD, Yang T, Lin L, Lu LM, Li HL, Sun M, Liu B, Chen M, Niu YT, Ye JF, Cao ZY, Liu HM, Wang XM, Wang W, Zhang JB, Meng Z, Cao W, Li JH, Wu SD, Zhao HL, Liu ZJ, Du ZY, Wang QF, Guo J, Tan XX, Su JX, Zhang LJ, Yang LL, Liao YY, Li MH, Zhang GQ, Chung SW, Zhang J, Xiang KL, Li RQ, Soltis DE, Soltis PS, Zhou SL, Ran JH, Wang XQ, Jin XH, Chen YS, Gao TG, Li JH, Zhang SZ, Lu AM, China Phylogeny Consortium (2016) Tree of life for the genera of Chinese vascular plants. Journal of Systematics and Evolution, 54, 277-306. |
11 | Christenhusz MJM, Vorontsova MS, Fay MF, Chase MW (2015) Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Botanical Journal of the Linnean Society, 178, 501-528. |
12 | Cronquist A (1981) An Integrated System of Classification of the Flowering Plants. Columbia University Press, New York. |
13 | Dahlgren R (1983) General aspects of angiosperm evolution and macro-systematics. Nordic Journal of Botany, 3, 119-149. |
14 | Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests. The American Naturalist, 165, E36-E65. |
15 | Donoghue MJ, Doyle JA (1989) Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In: Evolution, Systematics, and Fossil History of the Hamamelidae, vol. 1 (eds Crane PR, Blackmore S), pp. 17-45. Clarendon Press, Oxford, UK. |
16 | Doyle JA, Hotton CL (1991) Diversification of early angiosperm pollen in a cladistic context. In: Pollen and Spores: Patterns of Diversification (eds Blackmore S, Barnes SH), pp. 165-195. Clarendon Press, Oxford, UK. |
17 | Feng M, Fu DZ, Liang HX, Lu AM (1995) Floral morphogenesis of Aquilegia L. (Ranunculaceae). Acta Botanica Sinica, 37, 791-794. (in Chinese with English abstract) |
[冯旻, 傅德志, 梁汉兴, 路安民 (1995) 耧斗菜属花部形态发生. 植物学报, 37, 791-794.] | |
18 | Friis EM, Crane PR, Pedersen KR (2011) Early Flowers and Angiosperm Evolution. Cambridge University Press, Cambridge, UK. |
19 | Handel-Mazzetti H (1932) Rhoipteaceae, eine nenu Familie der Monochlamydeen. Feddes Repertorium, 30, 75-80. |
20 | Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA (2005) Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences. Systematic Botany, 30, 366-382. |
21 | Judd WS, Olmstead RG (2004) A survey of tricolpate (eudicot) phylogenetic relationships. American Journal of Botany, 91, 1627-1644. |
22 | Judd WS, Sanders RW, Donoghue MJ (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Papers in Botany, 5, 1-51. |
23 | Lu AM (1989) Explanatory notes on R. Dahlgren’s system of classification of the angiosperms. Cathaya, 1, 149-160. |
24 | Lu AM, Zhang ZY (1990) The differentiation, evolution and systematic relationship of Juglandales. Acta Phytotaxonomica Sinica, 28, 96-102. (in Chinese with English abstract) |
[路安民, 张志耘 (1990) 胡桃目的分化、进化和系统关系. 植物分类学报, 28, 96-102.] | |
25 | Melchior H (1964) A. Engler’s Syllabus der Pflanzenfamilien Band II. Gebrüder Borntraeger, Berlin-Nikolassee. |
26 | Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences, USA, 104, 19363-19368. |
27 | Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD (2009) Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. American Journal of Botany, 96, 67-82. |
28 | Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, Marchant AD, Briggs BG, Graham SW (2007) Hydatellaceae identified as a new branch near the base of the angiosperm. Nature, 446, 312-315. |
29 | Soltis DE, Moore MJ, Burleigh G, Soltis PS (2009) Molecular markers and concepts of plant evolutionary relationships: Progress, promise and future prospects. Critical Reviews in Plant Sciences, 28, 1-15. |
30 | Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 12, July2012. |
31 | Stuessy TF (2010) Paraphyly and the origin and classification of angiosperms. Taxon, 59, 689-693. |
32 | Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science, 296, 899-904. |
33 | Takhtajan A (2009) Flowering Plants, 2nd edn. Springer, Heidelberg. |
34 | Thorne RF (1992) Classification and geography of the flowering plants. Botantical Review, 58, 225-348. |
35 | Wang W, Lu AM, Ren Y, Chen ZD (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics, 11, 81-110. |
36 | Wu ZY, Lu AM, Tang YC, Chen ZD, Li DZ (2003) The families and genera of angiosperms in China: a comprehensive analysis. Science Press, Beijing. (in Chinese) |
[吴征镒, 路安民, 汤彦承, 陈之端, 李德铢 (2003) 中国被子植物科属综论. 科学出版社, 北京.] | |
37 | Xiang XG, Wang W, Li RQ, Lin L, Liu Y, Zhou ZK, Li ZY, Chen ZD (2014) Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspectives in Plant Ecology, Evolution and Systematics, 16, 101-110. |
38 | Zhang ZY, Lu AM, Wen J (1994) Embryology of Ehoiptelea chiliantha (Rhoipteaceae) and its systematic relationship. Cathaya, 6, 57-66. |
[1] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[2] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[3] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[4] | 张飞飞, 杨天凤, 陈莉荣, 刘冬梅, 杨柳园, 杨杜宇, 鞠鹏, 陆露. 被子植物花粉颜色多样性及应用研究进展[J]. 生物多样性, 2024, 32(1): 23346-. |
[5] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[6] | 韩赟, 迟晓峰, 余静雅, 丁旭洁, 陈世龙, 张发起. 青海野生维管植物名录[J]. 生物多样性, 2023, 31(9): 23280-. |
[7] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[8] | 韦毅刚, 温放, 辛子兵, 符龙飞. 广西野生维管植物名录[J]. 生物多样性, 2023, 31(6): 23078-. |
[9] | 黄雨菲, 路春燕, 贾明明, 王自立, 苏越, 苏艳琳. 基于无人机影像与面向对象-深度学习的滨海湿地植物物种分类[J]. 生物多样性, 2023, 31(3): 22411-. |
[10] | 林魏巍, 田呈明, 熊典广, 刘伟航, 热依汗古丽·斯地克, 梁英梅. 新疆杨树人工林中蜘蛛群落多样性及其影响因素[J]. 生物多样性, 2023, 31(3): 22493-. |
[11] | 李治中, 彭帅, 王青锋, 李伟, 梁士楚, 陈进明. 中国海菜花属植物隐种多样性[J]. 生物多样性, 2023, 31(2): 22394-. |
[12] | 宋会银, 胡征宇, 刘国祥. 绿藻门小球藻科的分类学研究进展[J]. 生物多样性, 2023, 31(2): 22083-. |
[13] | 杨涛, 沈泽昊, 王晓凤, 饶杰生, 刘文聪, 田希, 陈稀, 张秋雨, 刘倩, 钱恒君, 解宇阳, 刘其明, 徐衍潇, 涂梦灵, 单子铭, 张玉坤, 侯波, 李建斌, 欧晓昆. 滇中高原亚热带半湿润常绿阔叶林植物群落多样性特征[J]. 生物多样性, 2023, 31(11): 23238-. |
[14] | 王科, 蔡磊. 世界菌物新命名发表概况(2022年)[J]. 生物多样性, 2023, 31(10): 23176-. |
[15] | 杨蕊含, 闫美辰, 张露丹, 刘宏鑫, 许国丰, 何巧巧, 姚志远. 2022年世界蜘蛛目新分类单元[J]. 生物多样性, 2023, 31(10): 23175-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn