生物多样性 ›› 2016, Vol. 24 ›› Issue (7): 739-747.DOI: 10.17520/biods.2016168

所属专题: 全球气候变化下的海洋生物多样性专辑

• • 上一篇    下一篇

全球气候变化下的海洋浮游植物多样性

孙军1,2,,A;*(), 薛冰1,2   

  1. 1 .天津科技大学海洋与环境学院, 天津 300457
    2 .天津科技大学天津市海洋资源与化学重点实验室, 天津 300457
  • 收稿日期:2016-06-24 接受日期:2016-07-19 出版日期:2016-07-20 发布日期:2016-08-04
  • 通讯作者: 孙军
  • 基金资助:
    国家自然科学基金(41176136, 41276124, 41581260340)和教育部长江学者奖励计划

Marine phytoplankton diversity and the impact of global climate change

Jun Sun1,2,*(), Bing Xue1,2   

  1. 1 College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457
    2 Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457
  • Received:2016-06-24 Accepted:2016-07-19 Online:2016-07-20 Published:2016-08-04
  • Contact: Sun Jun

摘要:

理解全球气候变化对地球生态系统的影响是全世界广泛关注的问题, 而相比于陆地生态系统, 海洋生态系统对全球气候变化更为敏感。全球气候变化对海洋的影响主要表现在海洋暖化、海洋酸化、大洋环流系统的改变、海平面上升、紫外线辐射增强等方面。浮游植物是海洋生态系统最重要的初级生产者, 同时对海洋碳循环起到举足轻重的作用, 其对全球气候变化的响应主要体现在物种分布、初级生产力、群落演替、生物气候学等方面。具体表现在以下方面: 暖水种的分布范围在扩大, 冷水种分布范围在缩小; 浮游植物全球初级生产力降低; 浮游植物群落会向细胞体积更小的物种占优势的方向转变; 浮游植物水华发生的时间提前、强度增强; 一些有害物种水华的发生频率也会增加; 海洋表层海水的酸化会影响浮游植物特别是钙化类群的生长和群落多样性; 紫外辐射增强对浮游植物的生长起到抑制作用; 厄尔尼诺、拉尼娜、降水量的增加通常抑制浮游植物生长。浮游植物生长和分布的变化会体现在多样性的各个层面上。对于浮游植物在全球变化各种驱动因子下的生理生态学和长周期变动观测等是今后研究的重要方向, 也将为理解全球变化下的浮游植物-多样性-生态系统响应与反馈机制提供基本信息。

关键词: 全球气候变化, 浮游植物, 生物多样性, 生物量, 分布, 物候学, 群落结构

Abstract:

Understanding the effect of global climate change (GCC) on earth ecosystems is a key issue worldwide. Compared to terrestrial ecosystems, marine ecosystems are more sensitive to GCC. Stresses that GCC brings to oceans include warming, ocean acidification, changes in currents, sea level rise, and enhancement of ultraviolet radiation, etc. Phytoplankton are the key primary producers in marine ecosystems and very important in the ocean carbon cycle. Distribution patterns, primary productivity, community succession and phenology of phytoplankton can all be affected by GCC. For phytoplankton species distribution, the distribution region of warm-water species is generally extended, which is opposite the trend of cold-water species. Phytoplankton primary productivity is decreased globally, and phytoplankton cell sizes are gradually reduced. Intensity and timing of phytoplankton blooms are stronger and earlier, with a higher frequency of harmful algal blooms. Ocean acidification has been found to greatly affect the metabolisms and biodiversity of marine organisms, especially calcifying species. Enhancement of ultraviolet radiation may inhibit the growth of phytoplankton. Furthermore, El Niño, La Niña and enhanced precipitation will decrease phytoplankton biomass. The changes in phytoplankton growth and distribution will lead to variation of its biodiversity from the gene to ecosystem levels. Phytoplankton eco-physiological studies under GCC driven factors and long-term monitoring are key pathways for understanding the phytoplankton-diversity-ecosystem responses and feedbacks under GCC.

Key words: global climate change, phytoplankton, biodiversity, biomass, distribution, phenology, community structure