生物多样性 ›› 2016, Vol. 24 ›› Issue (8): 932-939. DOI: 10.17520/biods.2016096
曹云1,2, 沈文静2, 陈炼3, 胡飞龙2, 周蕾4, 徐海根2,*()
收稿日期:
2016-04-01
接受日期:
2016-05-27
出版日期:
2016-08-20
发布日期:
2016-09-02
通讯作者:
徐海根
基金资助:
Yun Cao1,2, Wenjing Shen2, Lian Chen3, Feilong Hu2, Lei Zhou4, Haigen Xu2,*()
Received:
2016-04-01
Accepted:
2016-05-27
Online:
2016-08-20
Published:
2016-09-02
Contact:
Xu Haigen
摘要:
由于受到气候变化、土地利用变化及环境污染等诸多因素的干扰, 真菌多样性受到不容忽视的威胁, 亟需得到保护。构建物种数据库是实现真菌多样性研究和保护的重要前提。近年来兴起的DNA条形码及metabarcoding技术能够在很大程度上弥补传统鉴定方法的缺陷, 可对真菌物种进行大规模、准确、快速、高效地鉴定。本文梳理了metabarcoding技术在真菌物种多样性评估、真菌多样性影响机制和真菌古生态重建等研究中的应用, 同时强调了metabarcoding技术用于真菌多样性研究尚处于初期阶段, 在构建有效参照数据库、优化实验流程以及升级生物信息学工具等方面仍需要进一步的完善。建议加强真菌分类学家、生态学家以及计算机工具研发工程师之间的合作, 共同解决metabarcoding技术在真菌多样性研究及应用中面临的问题, 为宏观尺度上真菌多样性保护提供更加科学的依据。
曹云, 沈文静, 陈炼, 胡飞龙, 周蕾, 徐海根 (2016) Metabarcoding技术在真菌多样性研究中的应用. 生物多样性, 24, 932-939. DOI: 10.17520/biods.2016096.
Yun Cao, Wenjing Shen, Lian Chen, Feilong Hu, Lei Zhou, Haigen Xu (2016) Application of metabarcoding technology in studies of fungal diversity. Biodiversity Science, 24, 932-939. DOI: 10.17520/biods.2016096.
[1] | Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics, 6, 189-196. |
[2] | Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples. Review of Palaeobotany and Palynology, 141, 225-230. |
[3] | Arnolds E (2001) The future of fungi in Europe: threats, conservation and management. In: Fungal Conservation: Issues and Solutions (eds Moore D, Nauta MM, Evans SE, Rotheroe M), pp. 64-80. Cambridge University Press, Cambridge. |
[4] | Bálint M, Schmidt PA, Sharma R, Thines M, Schmitt I (2014) An Illumina metabarcoding pipeline for fungi. Ecology and Evolution, 4, 2642-2653. |
[5] | Bazzicalupo AL, Bálint M, Schmitt I (2013) Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecology, 6, 102-109. |
[6] | Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87, 99-108. |
[7] | Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189. |
[8] | Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G (2013) Fungal palaeodiversity revealed using high-throu- ghput metabarcoding of ancient DNA from arctic permafrost. Environmental Microbiology, 15, 1176-1189. |
[9] | Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biology Reviews, 24, 1-16. |
[10] | Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk P, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13, 218-224. |
[11] | Boessenkool S, Mcglynn G, Epp LS, Taylor D, Pimentel M, Gizaw A, Nemomissa S, Brochmann C, Popp M (2014) Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conservation Biology, 28, 446-455. |
[12] | Brasier CM (1996) Low genetic diversity of the Ophiostoma novo-ulmi population in North America. Mycologia, 88, 951-964. |
[13] | Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SC (2011) Discriminating plant species in a local temperate flora using the rbcL + matK DNA barcode. Methods in Ecology and Evolution, 2, 333-340. |
[14] | Cannon P (1997) Strategies for rapid assessment of fungal diversity. Biodiversity and Conservation, 6, 669-680. |
[15] | CBOL Plant Working Group (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA, 106, 12794-12797. |
[16] | Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science, 325, 682-683. |
[17] | Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C (2012) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytologist, 196, 510-519. |
[18] | Crous P, Braun U, Schubert K, Groenewald J (2007) Delimiting Cladosporium from morphologically similar genera. Studies in Mycology, 58, 33-56. |
[19] | Cui X, Hu J, Wang J, Yang J, Lin X (2016) Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Applied Soil Ecology, 98, 140-149. |
[20] | Dannemiller KC, Reeves D, Bibby K, Yamamoto N, Peccia J (2014) Fungal high-throughput taxonomic identification tool for use with next-generation sequencing (FHiTINGS). Journal of Basic Microbiology, 54, 315-321. |
[21] | Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 40-50. |
[22] | Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53-58. |
[23] | Ferro M, Antonio EA, Souza W, Bacci M (2014) ITScan: a web-based analysis tool for internal transcribed spacer (ITS) sequences. BMC Research Notes, 7, 857. |
[24] | Foufopoulos J, Kilpatrick AM, Ives AR (2011) Climate change and elevated extinction rates of reptiles from Mediterranean Islands. The American Naturalist, 177, 119. |
[25] | Geiser DM, Pitt JI, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences, USA, 95, 388-393. |
[26] | Geml J, Gravendeel B, van der Gaag KJ, Neilen M, Lammers Y, Raes N, Semenova TA, de Knijff P, Noordeloos ME (2014) The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS ONE, 9, e99852. |
[27] | Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS, Griffiths RI, Schonrogge K (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in Ecology and Evolution, 6, 973-980. |
[28] | Halme P, Heilmann-Clausen J, Rämä T, Kosonen T, Kunttu P (2012) Monitoring fungal biodiversity—towards an integrated approach. Fungal Ecology, 5, 750-758. |
[29] | Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research, 95, 641-655. |
[30] | Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105, 1422-1432. |
[31] | Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodiversity and Conservation, 21, 2425-2433. |
[32] | Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313-321. |
[33] | Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, e157. |
[34] | Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16, 1245-1257. |
[35] | Krishnamurthy PK, Francis RA (2012) A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiversity and Conservation, 21, 1901-1919. |
[36] | Kumar S, Carlsen T, Mevik BH, Enger P, Blaalid R, Shalchian-Tabrizi K, Kauserud H (2011) CLOTU: an online pipeline for processing and clustering of 454 amplicon reads into OTUs followed by taxonomic annotation. BMC Bioinformatics, 12, 182. |
[37] | Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123. |
[38] | Li HY, Shen M, Zhou ZP, Li T, Wei YL, Lin LB (2012) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Diversity, 54, 79-86. |
[39] | Liu LY, Cui HF, Tian G (2013) Application of high throughput sequencing in metagenomics. Chinese Medicinal Biotechnology, 8(3), 196-200 (in Chinese) |
[刘莉扬, 崔鸿飞, 田埂 (2013) 高通量测序技术在宏基因组学中的应用. 中国医药生物技术, 8(3), 196-200.] | |
[40] | Lydolph MC, Jacobsen J, Arctander P, Gilbert MTP, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L (2005) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Applied and Environmental Microbiology, 71, 1012-1017. |
[41] | Lynch MD, Bartram AK, Neufeld JD (2012) Targeted recovery of novel phylogenetic diversity from next-generation sequence data. The ISME Journal, 6, 2067-2077. |
[42] | Mueller RC, Paula FS, Mirza BS, Rodrigues J, Nüsslein K, Bohannan B (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. The ISME Journal, 8, 1548-1550. |
[43] | Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2015) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nature Climate Change, 6, 182-186. |
[44] | Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296, 97-101. |
[45] | Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE, 1, e59. |
[46] | Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. The ISME Journal, 7, 1696-1709. |
[47] | Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Permafrost Soils (eds Margesin R), pp. 85-95. Springer Verlag, Berlin, Heidelberg. |
[48] | Rosa LH, Vieira MdLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiology Ecology, 73, 178-189. |
[49] | Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, USA, 109, 6241-6246. |
[50] | Seifert KA (2009) Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, 83-89. |
[51] | Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia, 101, 823-832. |
[52] | Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, Renfurm R, Verkley GJM, Groenewald M, Chaduli D, Lomascolo A, Welti S, Lesage-Meessen L, Favel A, Al-Hatmi AMS, Damm U, Yilmaz N, Houbraken J, Lombard L, Quaedvlieg W, Binder M, Vaas LAI, Vu D, Yurkov A, Begerow D, Roehl O, Guerreiro M, Fonseca A, Samerpitak K, van Diepeningen AD, Dolatabadi S, Moreno LF, Casaregola S, Mallet S, Jacques N, Roscini L, Egidi E, Bizet C, Garcia-Hermoso D, Martín MP, Deng S, Groenewald JZ, Boekhout T, de Beer ZW, Barnes I, Duong TA, Wingfield MJ, de Hoog GS, Crous PW, Lewis CT, Hambleton S, Moussa TAA, Al-Zahrani HS, Almaghrabi OA, Louis-Seize G, Assabgui R, McCormick W, Omer G, Dukik K, Cardinali G, Eberhardt U, de Vries M, Robert V (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia, 35, 242-263. |
[53] | Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS ONE, 9, e107783. |
[54] | Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 3, 65-76. |
[55] | Taylor TN, Osborn JM (1996) The importance of fungi in shaping the paleoecosystem. Review of Palaeobotany and Palynology, 90, 249-262. |
[56] | Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science, 346, 1256688. |
[57] | Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 188, 291-301. |
[58] | Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 12, 424-440. |
[59] | Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, USA, 102, 8245-8250. |
[60] | Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza, 22, 81-97. |
[61] | van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
[62] | van Geel B, Guthrie RD, Altmann JG, Broekens P, Bull ID, Gill FL, Jansen B, Nieman AM, Gravendeel B (2011) Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth. Quaternary Science Reviews, 30, 2289-2303. |
[63] | Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resources, 16, 388-401. |
[64] | Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267. |
[65] | White JR, Maddox C, White O, Angiuoli SV, Fricke WF (2013) CloVR-ITS: automated internal transcribed spacer amplicon sequence analysis pipeline for the characterization of fungal microbiota. Microbiome, 1, 6. |
[66] | Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science, 314, 1261-1265. |
[67] | Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 3, 613-623. |
[68] | Zhang T, Yao YF (2015) Endophytic fungal communities associated with vascular plants in the high Arctic zone are highly diverse and host-plant specific. PLoS ONE, 10, e0130051. |
[1] | 夏凡, 杨婧, 李建, 史洋, 盖立新, 黄文华, 张经纬, 杨南, 高福利, 韩莹莹, 鲍伟东. 北京地区四个豹猫亚种群肠道菌群的组成[J]. 生物多样性, 2022, 30(9): 22103-. |
[2] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[3] | 徐聪, 张飞宇, 俞道远, 孙新, 张峰. 土壤动物的分子分类预测策略评估[J]. 生物多样性, 2022, 30(12): 22252-. |
[4] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[5] | 夏呈强, 李毅, 党延茹, 察倩倩, 贺晓艳, 秦启龙. 中印度洋与南海西部表层海水细菌多样性[J]. 生物多样性, 2022, 30(1): 21407-. |
[6] | 俞正森, 宋娜, 本村浩之, 高天翔. 中国银口天竺鲷属鱼类的分类厘定[J]. 生物多样性, 2021, 29(7): 971-979. |
[7] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[8] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[9] | 靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. |
[10] | 韩本凤, 周欣, 张雪. 基因组学技术在病毒鉴定与宿主溯源中的应用[J]. 生物多样性, 2020, 28(5): 587-595. |
[11] | 胡芮, 王儒晓, 杜诗雨, 李萌, 邢雨辉, 潘达, 徐海根, 孙红英. 扬州宝应湖底栖大型无脊椎动物的生物多样性及其变化[J]. 生物多样性, 2020, 28(12): 1558-1569. |
[12] | 张全建, 杨彪, 付强, 王磊, 龚旭, 张远彬. 邛崃山系水鹿的冬季食性[J]. 生物多样性, 2020, 28(10): 1192-1201. |
[13] | 陆琪,胡强,施小刚,金森龙,李晟,姚蒙. 基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性[J]. 生物多样性, 2019, 27(9): 960-969. |
[14] | 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构[J]. 生物多样性, 2019, 27(8): 911-918. |
[15] | 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn