生物多样性 ›› 2016, Vol. 24 ›› Issue (8): 966-976. DOI: 10.17520/biods.2016057
• 论坛 • 上一篇
收稿日期:
2016-02-28
接受日期:
2016-07-12
出版日期:
2016-08-20
发布日期:
2016-09-02
通讯作者:
谢平
Received:
2016-02-28
Accepted:
2016-07-12
Online:
2016-08-20
Published:
2016-09-02
Contact:
Xie Ping
摘要:
真核生物的起源是一个根本性的、令人生畏的进化谜题, 目前设想的关于“核”起源的流行情景还远谈不上清晰。关于真核生物的起源可谓众说纷纭, 有共营模型、自演化模型、病毒性真核生物起源模型和外膜假说, 等等。迄今为止, 真核演化的动因则鲜有涉及。笔者发现, 从原核生物到真核生物, 基因组的DNA总量大约增加了3.5个数量级, 而这与现代真核生物的DNA压缩比(packing ratio)惊人地一致! 这样, 仅仅用偶然的吞噬、共生或寄生来解释真核生物的起源, 无论如何是难以让人信服的(其实, 正是内共生理论将人们引入了歧途), 而关键是需要解释基因组为何急剧增大。这可能与DNA的复制错误或多倍化现象不无关系, 当然并非完全排除不同种类个体之间的侧向的基因流动或整合的可能贡献。不难理解, DNA压缩机制的成型应该就是迈向真核生物的关键一步, 自然还伴随了细胞内部的结构分化、更为精巧而复杂的细胞分裂机制的发展, 等等。因此, 本文提出细胞核起源的新学说——压缩与结构化假说。此外, 从分子遗传学的角度来说, “性”一点都不神秘, 就是将两个个体的基因组拼在一起而已, 藉此种族多样的遗传信息分散到了个体之中; 而从生态的角度来看, “性”的原始动机就是与休眠事件的偶联。
谢平 (2016) 细胞核和有性生殖是如何起源的?. 生物多样性, 24, 966-976. DOI: 10.17520/biods.2016057.
Ping Xie (2016) How did nucleus and sexual reproduction come into being?. Biodiversity Science, 24, 966-976. DOI: 10.17520/biods.2016057.
图1 用蓝色荧光染料染色的海拉细胞(HeLa cells)的核DNA, 中间以及最右的细胞处于细胞间期, 因此整个核被标记, 而左边的细胞正在进入有丝分裂, 因此核DNA已经浓缩(来源: 维基百科)
Fig. 1 Cultured HeLa cells have been stained with Hoechst turning their nuclei blue. The central and rightmost cells are in interphase, so the entire nuclei are labeled. The cell on the left is going through mitosis and its DNA has condensed (source: Wikipedia)
图2 通过冷替代方式固定和准备的Gemmata obscuriglobus(a)和斯氏小梨形菌(Pirellula staleyi)(b)的薄切片透射电镜图。NE: 核膜; N: 拟核; ICM: 细胞质内膜; P: 外室细胞质; PL: pirellulosome (小梨形菌属的一种膜细胞隔室) (引自Fuerst, 2005)
Fig. 2 (a) Transmission electron micrograph of thin section of Gemmata obscuriglobus fixed and prepared via cryosubstitution, showing the membrane-bound nuclear body with its nuclear envelope (NE) surrounding the nucleoid (N) and the more general features of the planctomycete cell plan, including the intracytoplasmic membrane (ICM) and paryphoplasm (P). (b) Transmission electron micrograph of thin section of cryosubstituted cell of Pirellula staleyi displaying compartmentalization into pirellulosome (PI) and P separated by the ICM. N is contained within the pirellulosome and thus compartmentalized and surrounded by the single ICM membrane (cited from Fuerst, 2005)
图3 一种纤毛虫(Nassula ornata)与藻类的共生现象(× 160倍)(来源: Wim van Egmond)
Fig. 3 Symbiosis of the ciliate Nassula ornata with algae (magnification:160 ×) (source: Wim van Egmond)
图5 根据各类生物的C值推测真核生物DNA的压缩原理, 带箭头的红色虚线表示C值中位数的演化轨迹, 绿色虚线表示大多数真核生物C值的主要分布区间, 问号表示该类生物起源的年代仍然存在争议。C值引自Gregory (2004)。
Fig. 5 Packing principle of eukaryotic DNA based on “C value” of various organisms. The dotted red line with an arrow indicates evolutionary track of the median “C value”, and the dotted green line shows the major range of the “C value” of most eukaryotes. Question marks indicate uncertainity about the dates of their origins. C values of various organisms are cited from Gregory (2004)
图6 原核(上图, 大肠杆菌Escherichia coli)和真核(下图)细胞的分裂比较(引自Campbell & Reece, 2008)
Fig. 6 Comparison of the cell divisions between bacteria (upper figure, the bacterium Escherichia coli) and eukaryotes (lower figure) (cited from Campbell & Reece, 2008)
图7 细菌结合示意图。1: 供体细胞产生性菌毛; 2: 性菌毛接触受体细胞, 使两个细胞连接在一起; 3: 能移动的质体被切开, 一个单股的DNA被转移到受体细胞; 4: 两个细胞质粒重新环化, 合成第二股链, 产生性菌毛, 两个细胞又称为活性的供体(来源: 维基百科)。
Fig. 7 Schematic drawing of bacterial conjugation. Conjugation diagram. 1, Donor cell produces pilus; 2, Pilus attaches to recipient cell and brings the two cells together; 3, The mobile plasmid is nicked and a single strand of DNA is then transferred to the recipient cell; 4, Both cells synthesize a complementary strand to produce a double stranded circular plasmid and also reproduce pili; both cells are now viable donors (cited from Wikipedia).
[1] | Bell G (1982) The Masterpiece of Nature: the Evolution and Genetics of Sexuality. University of California Press, Berkeley. |
[2] | Bell PJ (2001) Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution, 53, 251-256. |
[3] | Campbell NA, Reece JB (2008) Biology, 8th edn. Benjamin Cummings, San Francisco. |
[4] | Coyne JA (2009) Why Evolution is True. Viking Penguin, New York David LA, Alm EJ (2011) Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 469, 93-96. |
[5] | de Roos AD (2006) The origin of the eukaryotic cell based on conservation of existing interfaces. Artificial Life, 12, 513-523. |
[6] | Ebert D (2005) Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD. |
[7] | Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annual Review of Microbiology, 59, 299-328. |
[8] | Gregory TR (2004) Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology, 30, 179-202. |
[9] | Hadany L, Comeron JM (2008) Why are sex and recombination so common? Annals of the New York Academy of Sciences, 1133, 26-43. |
[10] | Hogan CM (2010) Archaea. In: Encyclopedia of Earth (eds Monosson E, Cleveland C). National Council for Science and the Environment, Washington, DC. |
[11] | Jacob F (1998) Of Flies, Mice and Men (translated from the French edition). Harvard University Press, Cambridge MA. |
[12] | Koonin EV (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philosophical Transactions of the Royal Society B, 370, 20140333. |
[13] | Margulis L (1981) Symbiosis in Cell Evolution, pp. 206-227. W. H. Freeman and Company, San Francisco. |
[14] | Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B, 370, 20140330. |
[15] | McInerney J, Pisani D, O’Connell MJ (2015) The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philosophical Transactions of the Royal Society B, 370, 20140323 |
[16] | Mereschkowsky K (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biologisches Centralblatt 30, 353-367. |
[17] | Moreira D, López-García P (2015) Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philosophical Transactions of the Royal Society B, 370, 20140327. |
[18] | Pennisi E (2004) Evolutionary biology. The birth of the nucleus. Science, 305, 766-768. |
[19] | Prescott DM (1994) The DNA of ciliated protozoa. Microbiological Reviews, 58, 233-267. |
[20] | Raven PH, Evert RF, Eichhorn SE (1992) Biology of Plants, 5th edn. Worth Publishers, New York. |
[21] | Schurko AM, Neiman M, Logsdon JM Jr (2008) Signs of sex: what we know and how we know it. Trends in Ecology & Evolution, 24, 208-217. |
[22] | Takemura M (2001) Poxviruses and the origin of the eukaryotic nucleus. Journal of Molecular Evolution, 52, 419-442. |
[23] | Villarreal L, DeFilippis V (2000) A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. Journal of Virology, 74, 7079-7084. |
[24] | Wallin IE (1923) The mitochondria problem. The American Naturalist, 57, 255-261. |
[25] | Xie P (2013) Scaling Ecology to Understand Natural Design of Life Systems and Their Operations and Evolutions—Integration of Ecology, Genetics and Evolution Through Reproduction. Science Press, Beijing. |
[谢平 (2013) 从生态学透视生命系统的设计、运作与演化——生态、遗传和进化通过生殖的融合. 科学出版社, 北京.] | |
[26] | Xie P (2014) The Aufhebung and Breakthrough of the Theories on the Origin and Evolution of Life—Life in Philosophy and Philosophy in Life Sciences. Science Press, Beijing. |
[谢平 (2014) 生命的起源-进化理论之扬弃与革新——哲学中的生命, 生命中的哲学. 科学出版社, 北京.] | |
[27] | Zimmer C (2009) On the origin of sexual reproduction. Science, 324, 1254-1256. |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[3] | 邢超, 林依, 周智强, 赵联军, 蒋仕伟, 林蓁蓁, 徐基良, 詹祥江. 基于DNA条形码技术构建王朗国家级自然保护区陆生脊椎动物遗传资源数据库及物种鉴定[J]. 生物多样性, 2023, 31(7): 22661-. |
[4] | 董志远, 陈琳琳, 张乃鹏, 陈莉, 孙德斌, 倪艳梅, 李宝泉. 基于环境DNA宏条形码技术研究黄河三角洲典型潮沟系统鱼类多样性及其对水文连通性的响应[J]. 生物多样性, 2023, 31(7): 23073-. |
[5] | 湛振杰, 张超, 陈敏豪, 王嘉栋, 富爱华, 范雨薇, 栾晓峰. 基于DNA宏条形码技术的大兴安岭北部欧亚水獭冬季食性分析[J]. 生物多样性, 2023, 31(6): 22586-. |
[6] | 吴帆, 刘深云, 江虎强, 王茜, 陈开威, 李红亮. 中华蜜蜂和意大利蜜蜂秋冬期传粉植物多样性比较[J]. 生物多样性, 2023, 31(5): 22528-. |
[7] | 彭步青, 陶玲, 李靖, 范荣辉, 陈顺德, 付长坤, 王琼, 唐刻意. 基于DNA宏条形码研究四川老君山国家级自然保护区6种同域共存小型哺乳动物的食性[J]. 生物多样性, 2023, 31(4): 22474-. |
[8] | 沈梅, 郭宁宁, 罗遵兰, 郭晓晨, 孙光, 肖能文. 基于eDNA metabarcoding探究北京市主要河流鱼类分布及影响因素[J]. 生物多样性, 2022, 30(7): 22240-. |
[9] | 牛晓锋, 王晓梅, 张研, 赵志鹏, 樊恩源. 鲟鱼分子鉴定方法的整合应用[J]. 生物多样性, 2022, 30(6): 22034-. |
[10] | 彭丹, 武志强. 植物雌雄异株性别决定研究进展[J]. 生物多样性, 2022, 30(3): 21416-. |
[11] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[12] | 刘山林, 邱娜, 张纾意, 赵竹楠, 周欣. 基因组学技术在生物多样性保护研究中的应用[J]. 生物多样性, 2022, 30(10): 22441-. |
[13] | 俞正森, 宋娜, 本村浩之, 高天翔. 中国银口天竺鲷属鱼类的分类厘定[J]. 生物多样性, 2021, 29(7): 971-979. |
[14] | 张梦华, 张宪春. 中国薄叶卷柏复合群的物种划分[J]. 生物多样性, 2021, 29(12): 1607-1619. |
[15] | 范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞. 红砂基因组大小变异及物种分化[J]. 生物多样性, 2021, 29(10): 1308-1320. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn