生物多样性 ›› 2022, Vol. 30 ›› Issue (3): 21416. DOI: 10.17520/biods.2021416
收稿日期:
2021-10-19
接受日期:
2021-12-23
出版日期:
2022-03-20
发布日期:
2022-03-10
通讯作者:
武志强
作者简介:
*E-mail: wuzhiqiang@caas.cn基金资助:
Received:
2021-10-19
Accepted:
2021-12-23
Online:
2022-03-20
Published:
2022-03-10
Contact:
Zhiqiang Wu
摘要:
植物中雌雄性别分化是一种进化的性状。雌雄异株在多个开花植物谱系中独立演化, 但各个支系的性染色体状态、性别决定区域与性别决定基因不尽相同。多样的植物性染色体和性别决定系统为研究植物性别相关基因的形成机制、性别决定区域和性染色体进化提供了极好的机会。随着测序技术的进步和分析方法的提高, 近年来越来越多物种性别决定的相关分子机制得到解析, 并将理论成果应用于提升经济效益与城市环境等实际问题中。本文将从目前的研究现状和方法, 性别决定单、双基因模型的建立, 植物性染色体进化过程等方面进行总结, 对未来植物性别决定的研究提出四点建议: (1)研究方向逐步从基因研究扩展到调控途径研究; (2)从单一物种转向相关科属比较研究; (3)改进现有性别决定基因模型或探索新模型和性别模式物种; (4)加强性别鉴定技术在实际生产中的研发工作。同时探讨性别决定理论研究未来在农业生产、园艺绿化种植中幼苗性别鉴别筛选等方面的应用前景。
彭丹, 武志强 (2022) 植物雌雄异株性别决定研究进展. 生物多样性, 30, 21416. DOI: 10.17520/biods.2021416.
Dan Peng, Zhiqiang Wu (2022) Progress on sex determination of dioecious plants. Biodiversity Science, 30, 21416. DOI: 10.17520/biods.2021416.
类群 Taxon | 物种 Species | 性别决定系统 Sex determination system | 性别决定区域或基因 Sex-linked region or genes | 同源基因或家族 Ortholog gene or family | 参考文献 Reference |
---|---|---|---|---|---|
苔藓植物 Bryophyte | 地钱 Marchantia polymorpha | XY | 14个雄性特异性基因 14 male-specific genes | - | Yamato et al, |
裸子植物 Gymnosperm | 银杏 Ginkgo biloba | ZW | GbMADS18, Gb_15883, Gb_15884, Gb_15885, Gb_15886, Gb_28587 | MADS-box (GbMADS18), RR12 (Gb_15883), RR2 (Gb_15884), ELF6 (Gb_15885), AtBAT1 (Gb_15886), AGL8 (Gb_28587) | Zhang et al, |
被子植物 Angiosperm | 番木瓜 Carica papaya | XY | MSY4-5Mb, HSY8.1 Mb, XSY3.5 Mb | - | Liu et al, |
菠菜 Spinacia oleracea | XY | 4号连锁群 LG4 (66.98-69.72 cM and 75.48-92.96 cM) | - | Qian et al, | |
杨梅 Myrica rubra | ZW | 59 kb 8号染色体雌性特异性片段 59 kb female-specific region on chromosome 8 | - | Jia et al, 2019 | |
大麻 Cannabis sativa | XY | 性染色体 Sex chromosomes | - | Prentout et al, | |
蝇子草 Silene latifolia | XY | SlAP3, SlSTM, SlCUC | AP3 (SlAP3), STM (SlSTM), CUC1/CUC2 (SlCUC) | Zluvova et al, | |
草莓 Fragaria virginiana | ZW | GMEW, RPP0W | GDP-mannose 3,5-epimerase 2 (GMEW), 60S acidic ribosomal protein P0 (RPP0W) | Charlesworth, | |
葡萄 Vitis vinifera | XY | VviINP1, VviYABBY3 | INP1 (VviINP1), YAB1 (VviYABBY3) | Massonnet et al, | |
君迁子 Diospyros lotus | XY | MeGI, OGI | HB40 (MeGI) | Akagi et al, | |
芦笋 Asparagus officinalis | XY | SOFF, aspTDF1 | DUF247 (SOFF), TDF1 (aspTDF1) | Harkess et al, | |
猕猴桃 Actinidia chinensis | XY | SyGl, FrBy | ARR24 (SyGl), FAS1 (FrBy) | Akagi et al, | |
杨树 Populus deltoides, P. tremula, P. alba | XY, ZW | FERR-R, FERR, MmS, ARR17 | ARR17 | Müller et al, | |
柳树 Salix purpurea, S. triandra | ZW | RR | RR9/ARR17 | Li et al, |
表1 典型代表植物性别决定的研究成果
Table 1 Results of sex determination of representative plants
类群 Taxon | 物种 Species | 性别决定系统 Sex determination system | 性别决定区域或基因 Sex-linked region or genes | 同源基因或家族 Ortholog gene or family | 参考文献 Reference |
---|---|---|---|---|---|
苔藓植物 Bryophyte | 地钱 Marchantia polymorpha | XY | 14个雄性特异性基因 14 male-specific genes | - | Yamato et al, |
裸子植物 Gymnosperm | 银杏 Ginkgo biloba | ZW | GbMADS18, Gb_15883, Gb_15884, Gb_15885, Gb_15886, Gb_28587 | MADS-box (GbMADS18), RR12 (Gb_15883), RR2 (Gb_15884), ELF6 (Gb_15885), AtBAT1 (Gb_15886), AGL8 (Gb_28587) | Zhang et al, |
被子植物 Angiosperm | 番木瓜 Carica papaya | XY | MSY4-5Mb, HSY8.1 Mb, XSY3.5 Mb | - | Liu et al, |
菠菜 Spinacia oleracea | XY | 4号连锁群 LG4 (66.98-69.72 cM and 75.48-92.96 cM) | - | Qian et al, | |
杨梅 Myrica rubra | ZW | 59 kb 8号染色体雌性特异性片段 59 kb female-specific region on chromosome 8 | - | Jia et al, 2019 | |
大麻 Cannabis sativa | XY | 性染色体 Sex chromosomes | - | Prentout et al, | |
蝇子草 Silene latifolia | XY | SlAP3, SlSTM, SlCUC | AP3 (SlAP3), STM (SlSTM), CUC1/CUC2 (SlCUC) | Zluvova et al, | |
草莓 Fragaria virginiana | ZW | GMEW, RPP0W | GDP-mannose 3,5-epimerase 2 (GMEW), 60S acidic ribosomal protein P0 (RPP0W) | Charlesworth, | |
葡萄 Vitis vinifera | XY | VviINP1, VviYABBY3 | INP1 (VviINP1), YAB1 (VviYABBY3) | Massonnet et al, | |
君迁子 Diospyros lotus | XY | MeGI, OGI | HB40 (MeGI) | Akagi et al, | |
芦笋 Asparagus officinalis | XY | SOFF, aspTDF1 | DUF247 (SOFF), TDF1 (aspTDF1) | Harkess et al, | |
猕猴桃 Actinidia chinensis | XY | SyGl, FrBy | ARR24 (SyGl), FAS1 (FrBy) | Akagi et al, | |
杨树 Populus deltoides, P. tremula, P. alba | XY, ZW | FERR-R, FERR, MmS, ARR17 | ARR17 | Müller et al, | |
柳树 Salix purpurea, S. triandra | ZW | RR | RR9/ARR17 | Li et al, |
图1 双基因性别决定模型(改编自Charlesworth (2015))。Step 1: 物种某对常染色体其中一条获得某种性别不育基因突变; Step 2: 另一条染色体获得对应另一种性别不育基因的突变, 形成性染色体前体; Step 3: 不育基因形成连锁, 性染色体初步形成。其中f→SuF为显性突变, M→m为隐性突变, Step 3中Y染色体阴影部分为不育基因形成连锁。
Fig. 1 Sex determination genes of ‘two-mutations’ model (adapted from Charlesworth (2015)). Step 1: One of a pair of autochromosomes has acquired a mutation of a certain sex-sterile gene; Step 2: The other one autochromosome gains the mutation corresponding to another sex sterile gene, forming the precursor of sex chromosome; Step 3: Sterility genes are linked and sex chromosomes are preliminarily formed. ‘f’ to ‘SuF’ is a dominant mutation, and ‘M’ to ‘m’ is a recessive mutation. The shaded part of Y chromosome in Step 3 represents the linkage of sterile genes.
图2 性染色体进化推论(改编自Ming et al (2011))。a, 常染色体; b, 两个性别决定基因形成; c, 性别决定基因连锁, 形成初步性别决定区域; d, 更多性别相关基因连锁, 性别决定区域扩大; e, 由于重复序列累积, Y染色体增长; f, Y染色体退化; PAR, 拟常染色体区域; SDR, 性别决定区域; f→SuF为显性突变, M→m为隐性突变; M2→m2为雄性功能基因的隐性突变。
Fig. 2 Sex chromosome evolution corollary (adapted from Ming et al (2011)). a, Autosomes; b, Two sex-determining genes are formed; c, Sex determination genes are linked, forming a preliminary sex determination region; d, More sex related genes are linked, and the sex-determined region expands; e, The Y chromosome increases due to the accumulation of repeated sequences; f, Y chromosome degeneration; PAR, Pseudoautosomal regions; SDR, Sex-determined area. ‘f’ to ‘SuF’ is a dominant mutation, and ‘M’ to ‘m’ is a recessive mutation. ‘M2’ to ‘m2’ is a recessive mutation of another male functional gene.
[1] |
Abraham A, Mathew PM (1962) Cytological studies in the cycads: Sex chromosomes in Cycas. Annals of Botany, 26, 261-266.
DOI URL |
[2] |
Akagi T, Henry IM, Kawai T, Comai L, Tao R (2016) Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. The Plant Cell, 28, 2905-2915.
DOI URL |
[3] |
Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, Kataoka I, Tao R (2018) A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. The Plant Cell, 30, 780-795.
DOI URL |
[4] |
Akagi T, Henry IM, Tao R, Comai L (2014) Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science, 346, 646-650.
DOI URL |
[5] |
Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS, Sonoda M, Firl A, McNeilage MA, Douglas MJ, Wang T, Rebstock R, Voogd C, Datson P, Allan AC, Beppu K, Kataoka I, Tao R (2019) Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants, 5, 801-809.
DOI URL |
[6] | Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, Comai L, Henry IM (2020) The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics, 16, e1008566. |
[7] |
Aryal R, Ming R (2014) Sex determination in flowering plants: Papaya as a model system. Plant Science, 217/218, 56-62.
DOI URL |
[8] |
Bačovský V, Čegan R, Šimoníková D, Hřibová E, Hobza R (2020) The formation of sex chromosomes in Silene latifolia and S. dioica was accompanied by multiple chromosomal rearrangements. Frontiers in Plant Science, 11, 205.
DOI PMID |
[9] |
Cegan R, Marais GA, Kubekova H, Blavet N, Widmer A, Vyskot B, Dolezel J, Safár J, Hobza R (2010) Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biology, 10, 180.
DOI URL |
[10] |
Charlesworth B (1991) The evolution of sex chromosomes. Science, 251, 1030-1033.
PMID |
[11] |
Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. The American Naturalist, 112, 975-997.
DOI URL |
[12] |
Charlesworth D (2012) Plant sex chromosome evolution. Journal of Experimental Botany, 64, 405-420.
DOI URL |
[13] | Charlesworth D (2013) Evolution of Sex Chromosomes in Plants. In:Encyclopedia of Life Sciences. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd: Chichester. https://doi.org/10.1002/9780470015902.a0025144. |
[14] |
Charlesworth D (2015) Plant contributions to our understanding of sex chromosome evolution. New Phytologist, 208, 52-65.
DOI PMID |
[15] |
Charlesworth D (2016) Plant sex chromosomes. Annual Review of Plant Biology, 67, 397-420.
DOI PMID |
[16] |
Charlesworth D (2019) Young sex chromosomes in plants and animals. New Phytologist, 224, 1095-1107.
DOI PMID |
[17] |
Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity, 95, 118-128.
DOI PMID |
[18] | Delph LF, Arntz AM, Scotti-Saintagne C, Scotti I (2010) The genomic architecture of sexual dimorphism in the dioecious plant Silene latifolia. Evolution, 64, 2873-2886. |
[19] | Fu L, Zheng YH, Wu MY, Han FG, Gu YH, Zhang HW (2019) A Method for Identifying the Sex of A Dioecious Plant. CN109655519A. Released date: 20190419. (in Chinese) |
[ 傅力, 郑玉红, 吴梦瑶, 韩福贵, 顾永华, 张怀伟 (2019) 一种雌雄异株植物的性别鉴定方法. CN109655519A. 发布日期: 20190419. ] | |
[20] |
Harkess A, Huang K, van der Hulst R, Tissen B, Caplan JL, Koppula A, Batish M, Meyers BC, Leebens-Mack J (2020) Sex determination by two Y-linked genes in garden Asparagus. The Plant Cell, 32, 1790-1796.
DOI PMID |
[21] |
Harkess A, Zhou J, Xu C, Bowers JE, van der Hulst R, Ayyampalayam S, Mercati F, Riccardi P, McKain MR, Kakrana A, Tang H, Ray J, Groenendijk J, Arikit S, Mathioni SM, Nakano M, Shan H, Telgmann-Rauber A, Kanno A, Yue Z, Chen H, Li W, Chen Y, Xu X, Zhang Y, Luo S, Chen H, Gao J, Mao Z, Pires JC, Luo M, Kudrna D, Wing RA, Meyers BC, Yi K, Kong H, Lavrijsen P, Sunseri F, Falavigna A, Ye Y, Leebens-Mack JH, Chen G (2017) The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications, 8, 1279.
DOI PMID |
[22] |
Hormaza JI, Dollo L, Polito VS (1994) Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theoretical and Applied Genetics, 89, 9-13.
DOI PMID |
[23] | Janick J, Stevenson EC (1954) A genetic study of the heterogametic nature of the staminate plant in spinach. Journal of the American Society for Horticultural Science, 63, 444-446. |
[24] |
Jia HM, Jia HJ, Cai QL, Wang Y, Zhao HB, Yang WF, Wang GY, Li YH, Zhan DL, Shen YT, Niu QF, Chang L, Qiu J, Zhao L, Xie HB, Fu WY, Jin J, Li XW, Jiao Y, Zhou CC, Tu T, Chai CY, Gao JL, Fan LJ, van de Weg E, Wang JY, Gao ZS (2018) The red bayberry genome and genetic basis of sex determination. Plant Biotechnology Journal, 17, 397-409.
DOI URL |
[25] |
Kazama Y, Ishii K, Aonuma W, Ikeda T, Kawamoto H, Koizumi A, Filatov DA, Chibalina M, Bergero R, Charlesworth D, Abe T, Kawano S (2016) A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Scientific Reports, 6, 18917.
DOI URL |
[26] | Li GL, Lin BN, Shen DX (1993) Sex identification of horticultural dioecious plants by phenolics analysis. Acta Horticulturae Sinica, 20, 397-398. (in Chinese) |
[ 李国梁, 林伯年, 沈德绪 (1993) 酚类物质在鉴别园艺雌雄性植物中的应用研究. 园艺学报, 20, 397-398.] | |
[27] |
Li W, Wu HT, Li XP, Chen YN, Yin TM (2020) Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix. Horticulture Research, 7, 64.
DOI URL |
[28] |
Liao QG, Du R, Gou JB, Guo LJ, Shen H, Liu HL, Nguyen JK, Ming R, Yin TM, Huang SW, Yan JB (2020) The genomic architecture of the sex-determining region and sex-related metabolic variation in Ginkgo biloba. The Plant Journal, 104, 1399-1409.
DOI URL |
[29] |
Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 427, 348-352.
DOI URL |
[30] |
Lorenzo JLR, Hobza R, Vyskot B (2018) DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia. BMC Genomics, 19, 540.
DOI URL |
[31] |
Massonnet M, Cochetel N, Minio A, Vondras AM, Lin J, Muyle A, Garcia JF, Zhou Y, Delledonne M, Riaz S, Figueroa-Balderas R, Gaut BS, Cantu D (2020) The genetic basis of sex determination in grapes. Nature Communications, 11, 2902.
DOI PMID |
[32] |
Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annual Review of Plant Biology, 62, 485-514.
DOI PMID |
[33] |
Ming R, Yu QY, Moore PH (2007) Sex determination in papaya. Seminars in Cell and Developmental Biology, 18(3), 401-408.
PMID |
[34] |
Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, Bräutigam K, Carracedo Lorenzo Z, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M (2020) A single gene underlies the dynamic evolution of poplar sex determination. Nature Plants, 6, 630-637.
DOI PMID |
[35] |
Picq S, Santoni S, Lacombe T, Latreille M, Weber A, Ardisson M, Ivorra S, Maghradze D, Arroyo-Garcia R, Chatelet P, This P, Terral JF, Bacilieri R (2014) A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biology, 14, 229.
DOI URL |
[36] |
Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, Feng C, Käfer J, Karlov G, Marais GAB (2020) An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Research, 30, 164-172.
DOI PMID |
[37] | Qian W, Fan GY, Liu DD, Zhang HL, Wang XW, Wu J, Xu ZS (2017) Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). BMC Genomics, 18, 276. |
[38] |
Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. American Journal of Botany, 82, 596-606.
DOI URL |
[39] |
Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and sex on an extended genetic map of Vitis rupestris × V. arizonica. Theoretical and Applied Genetics, 113, 1317-1329.
PMID |
[40] |
She HB, Xu ZS, Zhang HL, Li GL, Wu J, Wang XW, Li Y, Liu ZY, Qian W (2021) Identification of a male-specific region (MSR) in Spinacia oleracea. Horticultural Plant Journal, 7, 341-346.
DOI URL |
[41] |
Sondur SN, Manshardt RM, Stiles JI (1996) A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theoretical and Applied Genetics, 93, 547-553.
DOI PMID |
[42] |
Spigler RB, Lewers KS, Main DS, Ashman TL (2008) Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity, 101, 507-517.
DOI PMID |
[43] |
Storey WB (1953) Genetics of the papaya. Journal of Heredity, 44, 70-78.
DOI URL |
[44] | Tao YS, Liao YM, Li YX, Wang BX, Liao XL, Ye XD, Chen JS (2013) Morphological characteristics and physiological-biochemical indexes of male and female Cercidiphyllum japonicum. Journal of Northeast Forestry University, 41(3), 18-19, 39. (in Chinese with English abstract) |
[ 陶应时, 廖咏梅, 黎云祥, 王碧霞, 廖兴利, 叶兴东, 陈劲松 (2013) 连香树雌雄株叶片形态及生理生化指标比较. 东北林业大学学报, 41(3), 18-19, 39.] | |
[45] |
Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, Ashman TL (2018) Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biology, 16, e2006062.
DOI URL |
[46] |
Villarreal JC, Renner SS (2013) Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evolutionary Biology, 13, 239.
DOI PMID |
[47] |
Walas L, Mandryk W, Thomas PA, Tyrala-Wierucka Z, Iszkulo G (2018) Sexual systems in gymnosperms: A review. Basic and Applied Ecology, 31, 1-9.
DOI URL |
[48] | Wang BP, Cheng XJ, Dai WS, Yang FF (1999) Seasonal variation of endogenous hormones and nucleicacids in female and male plants of Ginko biloba. Journal of Zhejiang Forestry College, 16, 114-118. (in Chinese with English abstract) |
[ 王白坡, 程晓建, 戴文圣, 杨飞峰 (1999) 银杏雌雄株内源激素和核酸的变化. 浙江林学院学报, 16, 114-118.] | |
[49] | Wang JP, Na JK, Yu QY, Gschwend AR, Han J, Zeng FC, Aryal R, VanBuren R, Murray JE, Zhang WL, Navajas-Pérez R, Feltus FA, Lemke C, Tong EJ, Chen CX, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang JM, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proceedings of the National Academy of Sciences, USA, 109, 13710-13715. |
[50] |
Werren JH, Beukeboom LW (1998) Sex determination, sex ratios, and genetic conflict. Annual Review of Ecology and Systematics, 29, 233-261.
DOI URL |
[51] | Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Advances in Genetics, 9, 217-281. |
[52] | Xue LJ, Wu HT, Chen YN, Li XP, Hou J, Lu J, Wei SY, Dai XG, Matthew S. Olson, Liu JQ, Wang MX, Charlesworth D, Yin TM (2020) Two antagonistic effect genes mediate separation of sexes in a fully dioecious plant. bioRxiv: 993022. https://www.biorxiv.org/content/10.1101/2020.03.15.993022v1 . (accessed on 2020-08-10) |
[53] | Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, Fujishita M, Bando H, Yodoya K, Hayashi K, Bando T, Hasumi A, Nishio T, Sakata R, Yamamoto M, Yamaki A, Kajikawa M, Yamano T, Nishide T, Choi SH, Shimizu-Ueda Y, Hanajiri T, Sakaida M, Kono K, Takenaka M, Yamaoka S, Kuriyama C, Kohzu Y, Nishida H, Brennicke A, Shin-i T, Kohara Y, Kohchi T, Fukuzawa H, Ohyama K (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proceedings of the National Academy of Sciences, USA, 104, 6472-6477. |
[54] |
Yang WL, Wang DY, Li YL, Zhang ZY, Tong SF, Li MM, Zhang X, Zhang L, Ren LW, Ma XZ, Zhou R, Sanderson BJ, Keefover-Ring K, Yin TM, Smart LB, Liu JQ, DiFazio SP, Olson M, Ma T (2021) A general model to explain repeated turnovers of sex determination in the Salicaceae. Molecular Biology and Evolution, 38, 968-980.
DOI URL |
[55] | Zhang H, Zhang R, Yang XW, Gu KJ, Chen WB, Chang Y, Xu QW, Liu Q, Qin YT, Hong XN, Seim I, Lin HY, Li WH, Tian JF, Li SS, Liu JN, Su XS, Wang CY, Zhang FM, Ge S, Fu CX, Lee SMY, Xia YJ, Wang J, Yang HM, Fan GY, Xu X, Zhao YP, Xin (2019) Recent origin of an XX/XY sex-determination system in the ancient plant lineage Ginkgo biloba. bioRxiv: 517946. https://www.biorxiv.org/co ntent/10.1101/517946v1 . (accessed on 2020-08-24) |
[56] |
Zhou R, Macaya-Sanz D, Carlson CH, Schmutz J, Jenkins JW, Kudrna D, Sharma A, Sandor L, Shu SQ, Barry K, Tuskan GA, Ma T, Liu JQ, Olson M, Smart LB, DiFazio SP (2020) A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biology, 21, 38.
DOI PMID |
[57] | Zluvova J, Nicolas M, Berger A, Negrutiu I, Monéger F (2006) Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proceedings of the National Academy of Sciences, USA, 103, 18854-18859. |
[1] | 何花, 谭敦炎, 杨晓琛. 被子植物隐型雌雄异株性系统的多样性、系统演化及进化意义[J]. 生物多样性, 2024, 32(6): 24149-. |
[2] | 舒为杰, 何花, 曾罗, 谷志容, 谭敦炎, 杨晓琛. 雌雄异株物种一把伞南星雌雄株空间分布及性别二态性[J]. 生物多样性, 2024, 32(6): 24084-. |
[3] | 王芸芸, 郝占庆. 被子植物性系统的多样性、生态功能及分布规律[J]. 生物多样性, 2022, 30(7): 22065-. |
[4] | 宋垚彬, 徐力, 段俊鹏, 张卫军, 申屠晓露, 李天翔, 臧润国, 董鸣. 西藏极小种群野生植物密叶红豆杉种群的性比及雌雄空间格局[J]. 生物多样性, 2020, 28(3): 269-276. |
[5] | 王颖灿, 林家怡, 许涵, 林明献, 李意德. 海南尖峰岭热带山地雨林60 ha大样地木本植物性别系统数量特征[J]. 生物多样性, 2019, 27(3): 297-305. |
[6] | 潘春芳, 张春雨, 赵秀海, 夏富才, 周海成, 王云. 不同林龄阔叶红松林林下簇毛槭的性比格局及雌雄个体的空间分布[J]. 生物多样性, 2010, 18(3): 292-299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn