生物多样性 ›› 2017, Vol. 25 ›› Issue (2): 156-162. DOI: 10.17520/biods.2015336 cstr: 32101.14.biods.2015336
所属专题: 物种形成与系统进化
收稿日期:
2015-12-01
接受日期:
2016-02-03
出版日期:
2017-02-20
发布日期:
2017-03-06
通讯作者:
鲁丽敏
基金资助:
Danxiao Peng1,2, Limin Lu1,*(), Zhiduan Chen1
Received:
2015-12-01
Accepted:
2016-02-03
Online:
2017-02-20
Published:
2017-03-06
Contact:
Lu Limin
摘要:
区域生命之树是对一个区域内的所有物种进行生命之树重建, 在最近10年已成为生命科学领域的研究热点。生命之树反映了物种间的亲缘关系和进化信息, 可以将生物区系形成与发展过程中的进化和生态因素联系起来, 是揭示区系来源和演化规律的有效手段。本文从3个方面总结了区域生命之树在植物区系研究中的应用: (1) 在时间维度上, 通过生命之树类群分化时间和进化速率估算, 反映区系演化历史, 揭示区系的时间分化格局; (2) 在空间维度上, 结合系统发育信息与物种分布数据, 揭示区系内生物多样性的空间格局, 并在此基础上进行区系分区; (3)整合生物地理信息和气候环境数据, 分析区系中生物类群对古地理事件以及气候变化的响应机制, 以揭示形成现存生物多样性格局的生态、地理和历史因素。此外, 我们阐述了区域生命之树与全球生命之树之间的关系; 指出由于类群取样不全而造成的时间估算偏差是区域生命之树研究中需要注意的问题; 建议对生物多样性热点地区从不同尺度进行大数据的整合分析。
彭丹晓, 鲁丽敏, 陈之端 (2017) 区域生命之树及其在植物区系研究中的应用. 生物多样性, 25, 156-162. DOI: 10.17520/biods.2015336.
Danxiao Peng, Limin Lu, Zhiduan Chen (2017) Regional tree of life and its application in floristic studies. Biodiversity Science, 25, 156-162. DOI: 10.17520/biods.2015336.
1 | Chao A, Chiu CH, Jost L (2014) Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297-324. |
2 | Corbelli JM, Zurita GA, Filloy J, Galvis JP, Vespa NI, Bellocq I (2015) Integrating taxonomic, functional and phylogenetic beta diversities: interactive effects with the biome and land use across taxa. PLoS ONE, 10, e0126854. |
3 | Crisp MD, Cook LG (2013) How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annual Review of Ecology, Evolution, and Systematics, 44, 303-324. |
4 | Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
5 | Faith DP, Reid CAM, Hunter J (2004) Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conservation Biology, 18, 255-261. |
6 | Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN (2015) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biological Reviews, 90, 236-253. |
7 | Feng G, Zhang JL, Pei NC, Rao MD, Mi XC, Ren HB, Ma KP (2012) Comparison of phylobetadiversity indices based on community data from Gutianshan Forest Plot. Chinese Science Bulletin, 57, 623-630. |
8 | Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760. |
9 | Ge XJ (2015) Application of DNA barcoding in phylofloristics study. Biodiversity Science, 23, 295-296. |
(in Chinese) [葛学军 (2015) DNA条形码在植物系统发育区系学研究中的应用. 生物多样性, 23, 295-296.] | |
10 | González-Caro S, Umaña MN, Álvarez E, Stevenson PR, Swenson NG (2014) Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. Journal of Plant Ecology, 7, 145-153. |
11 | Lancaster LT, Kay KM (2013) Origin and diversification of the California flora: re-examing classic hypotheses with molecular phylogenies. Evolution, 67, 1041-1054. |
12 | Lavergne S, Hampe A, Arroyo J (2013) In and out of Africa: How did the Strait of Gibraltar affect plant species migration and local diversification? Journal of Biogeography, 40, 24-36. |
13 | Li R, Kraft NJB, Yang J, Wang Y (2015) A phylogenetically informed delineation of floristic regions within a biodiversity hotspot in Yunnan, China. Scientific Reports, 5, 9396. |
14 | Linder HP, Hardy CR, Rutschmann F (2005) Taxon sampling effects in molecular clock dating: an example from the African Restionaceae. Molecular Phylogenetics and Evolution, 35, 569-582. |
15 | Linder HP (2008) Plant species radiations: where, when, why? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 3097-3105. |
16 | Lu LM, Sun M, Zhang JB, Li HL, Lin L, Yang T, Chen M, Chen ZD (2014) Tree of life and its applications. Biodiversity Science, 22, 3-20. |
(in Chinese with English abstract) [鲁丽敏, 孙苗, 张景博, 李洪雷, 林立, 杨拓, 陈闽, 陈之端 (2014) 生命之树及其应用. 生物多样性, 22, 3-20.] | |
17 | Milne RI (2006) Northern hemisphere plant disjunctions: a window on tertiary land bridges and climate change? Annals of Botany, 98, 465-472. |
18 | Mishler BD, Knerr N, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT (2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications, 5, 4473. |
19 | Monnet AC, Jiguet F, Meynard CN, Mouillot D, Mouquet N, Thuiller W, Devictor V (2014) Asynchrony of taxonomic, functional and phylogenetic diversity in birds. Global Ecology and Biogeography, 23, 780-788. |
20 | Pillon Y (2012) Time and tempo of diversification in the flora of New Caledonia. Botanical Journal of the Linnean Society, 170, 288-298. |
21 | Qian H, Zhang J (2015) Are phylogenies derived from family-level supertrees robust for studies on macroecological patterns along environmental gradients? Journal of Systematics and Evolution, 54, 29-36. |
22 | Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18, 4061-4072. |
23 | Swenson NG, Umaña MN (2014) Phylofloristics: an example from the Lesser Antilles. Journal of Plant Ecology, 7, 166-175. |
24 | Tsirogiannis C, Sandel B (2014) Computing the skewness of the phylogenetic mean pairwise distance in linear time. Algorithms for Molecular Biology, 9, 15. |
25 | Warren BH, Bakker FT, Bellstedt DU, Bytebier B, Claßen-Bockhoff R, Dreyer LL, Edwards D, Forest F, Galley C, Hardy CR, Linder HP, Muasya AM, Mummenhoff K, Oberlander KC, Quint M, Richardson JE, Savolainen V, Schrire BD, van der Niet T, Verboom GA, Yesson C, Hawkins JA (2011) Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora. BMC Evolutionary Biology, 11, 39. |
26 | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
27 | Weigelt P, Kissling WD, Kisel Y, Fritz SA, Karger DN, Kessler M, Lehtonen S, Svenning JC, Kreft H (2015) Global patterns and drivers of phylogenetic structure in island floras. Scientific Reports, 5, 12213. |
28 | Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338. |
29 | Wu ZY, Sun H, Zhou ZK, Li DZ, Peng H (2010) Floristics of Seed Plants from China. Science Press, Beijing. |
(in Chinese) [吴征镒, 孙航, 周浙昆, 李德铢, 彭华 (2010) 中国种子植物区系地理. 科学出版社, 北京.] |
[1] | 宋远昊, 龚吕, 李贲, 胡阳, 李秀珍. 辽河口不同退塘还湿方式对大型底栖动物的影响[J]. 生物多样性, 2025, 33(2): 24316-. |
[2] | 魏诗雨, 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰. 秦岭火地塘针叶林土壤细菌群落的海拔分布格局[J]. 生物多样性, 2024, 32(9): 24180-. |
[3] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[4] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[5] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[6] | 何林君, 杨文静, 石宇豪, 阿说克者莫, 范钰, 王国严, 李景吉, 石松林, 易桂花, 彭培好. 火烧干扰下植物群落系统发育和功能多样性对紫茎泽兰入侵的影响[J]. 生物多样性, 2024, 32(11): 24269-. |
[7] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[8] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[9] | 丁炳扬, 金孝锋, 张永华, 李根有, 陈征海, 张方钢. 浙江野生种子植物的分布格局与区系分区[J]. 生物多样性, 2023, 31(4): 22515-. |
[10] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[11] | 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化[J]. 生物多样性, 2023, 31(12): 23262-. |
[12] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[13] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[14] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[15] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn