生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 559-569. DOI: 10.17520/biods.2015223 cstr: 32101.14.biods.2015223
所属专题: 物种形成与系统进化
张德兴1,2
收稿日期:
2015-08-12
接受日期:
2015-09-15
出版日期:
2015-09-20
发布日期:
2015-10-12
作者简介:
# 共同第一作者
基金资助:
Dexing Zhang1,2
Received:
2015-08-12
Accepted:
2015-09-15
Online:
2015-09-20
Published:
2015-10-12
About author:
# Co-first authors
摘要:
分子生态学是多学科交叉的整合性研究领域, 是运用进化生物学理论解决宏观生物学问题的科学。经过半个多世纪的发展, 本学科已日趋成熟, 它不仅已经广泛渗透到宏观生物学的众多学科领域, 而且已经成为连接和融合很多不同学科的桥梁, 是目前最具活力的研究领域之一。其研究的范畴, 从最基础的理论和方法技术, 到格局和模式的发现和描述, 到对过程和机制的深入探讨, 再到付诸于实践的行动和规划指导等各个层次。分子生态学的兴起给宏观生物学带来了若干飞跃性的变化, 使宏观生物学由传统的以观察、测量和推理为主的描述性研究转变为以从生物和种群的遗传构成的变化和历史演化背景上检验、证明科学假设及揭示机制和规律为主的机制性/解释性研究, 因而使得对具有普遍意义的科学规律、生态和进化过程及机制的探索成为可能。分子生态学已经进入组学研究时代, 这使得阐明复杂生态过程、生物地理过程和适应性演化过程的机制性研究由原来难以企及的梦想变成完全可以实现的探求; 它也带来了全新的挑战, 其中最有深远影响的将是对分子生态学研究至关重要的进化生物学基础理论方面的突破, 例如遗传变异理论、种群分化理论、表观遗传因素的作用, 乃至进化生物学的基本知识构架等等。这些方面的进展必将使宏观生物学迎来一场空前的革命, 并对生态学的所有分支学科产生重大影响, 甚至催生诸如生态表观组学这样的新分支学科。对于中国科学家来说, 分子生态学组学时代的开启, 更是一个千载难逢的机遇, 为提出和建立生命科学的新方法、新假说、新思想和新理论提供了莫大的探索空间——此前我们对宏观生物学方法、理论和思想的发展贡献很小。然而, 限制组学时代重大突破的关键因素是理论、概念、理念、实验方法或分析方法方面的创新和突破, 这正是我国分子生态学研究最薄弱的环节。我国教育部门应尽快调整生命科学本科生培养的理念和方法, 以培养具备突出创新潜力的年轻一代后备人才; 同时, 科研项目资助部门和研究人员不仅应清醒地认识本学科领域的发展态势, 更要及时调整思路, 树立新的项目管理理念和治学 理念。
张德兴 (2015) 对我国分子生态学研究近期发展战略的一些思考. 生物多样性, 23, 559-569. DOI: 10.17520/biods.2015223.
Dexing Zhang (2015) Unorthodox reflections on molecular ecology research in China. Biodiversity Science, 23, 559-569. DOI: 10.17520/biods.2015223.
[20] | Schmitt T (2009) Biogeographical and evolutionary importance of the European high mountain systems.Frontiers in Zoology, 6, 9. |
[21] | Schmitt T, Hewitt GM (2004) The genetic pattern of population threat and loss: a case study of butterflies.Molecular Ecology, 13, 21-31. |
[22] | Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London, Series B, Biological Sciences, 277, 661-671. |
[23] | Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe.Molecular Ecology, 7, 453-464. |
[24] | Wakeley J (2009) Coalescent Theory: An Introduction. Roberts & Company Publishers, Colorado. |
[25] | Whitlock R (2014) Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis.Journal of Ecology, 102, 857-872. |
[26] | Yang Z (2014) Molecular Evolution: A Statistical Approach. Oxford University Press, Oxford. |
[27] | Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects.Molecular Ecology, 12, 563-584. |
[28] | Zhang DX (张德兴) (2002) Chapter 1. Molecular Ecology. In: Modern Ecology (现代生态学) (ed. Ge F (戈峰)), pp. 7-31. Science Press, Beijing (in Chinese) |
[29] | Zhang DX (张德兴) (2008) Chapter 1. Molecular Ecology. In: Modern Ecology (现代生态学), 2nd edn. (ed. Ge F (戈峰)), pp. 8-35. Science Press, Beijing. (in Chinese) |
[30] | Zhang DX (2015) Are we really seeing the big picture? Some reflections on the current debates in evolutionary biology.Current Zoology, 61, 217-220. |
[1] | Allis CD, Jenuwein T, Reinberg D, Caparros ML (2007) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. |
[2] | Beaumont MA, Nielsen R, Robert C, Hey J, Gaggiotti O, Knowles L, Estoup A, Panchal M, Corander J, Hickerson M, Sisson SA, Fagundes N, Chikhi L, Beerli P, Vitalis R, Cornuet JM, Huelsenbeck J, Foll M, Yang ZH, Rousset F, Balding D, Excoffier L (2010) In defence of model-based inference in phylogeography.Molecular Ecology, 19, 436-446. |
[3] | Brown EJ, Bachtrog D (2014) The chromatin landscape of Drosophila: comparisons between species, sexes, and chromosomes.Genome Research, 24, 1125-1137. |
[4] | Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success.Molecular Ecology, 19, 1253-1263. |
[5] | Diepeveen ET, Salzburger V (2012) Two Decades of Molecular Ecology: where are we and where are we heading?Molecular Ecology, 21, 5656-5659. |
[6] | Ellegren H (2014) Genome sequencing and population genomics in non-model organisms.Trends in Ecology and Evolution, 29, 51-63. |
[7] | Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms.Cell, 157, 95-109. |
[8] | Hewitt G (2000) The genetic legacy of Quaternary ice age.Nature, 405, 907-913. |
[9] | Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary.Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 359, 183-195. |
[10] | Hewitt GM (2011) Quaternary phylogeography: the roots of hybrid zones.Genetica, 139, 1-22. |
[11] | Hudson RR (1990) Gene genealogies and the coalescent process.Oxford Surveys in Evolutionary Biology, 7, 1-44. |
[12] | Karl SA, Toonen RJ, Grant WS, Bowen BW (2012) Common misconceptions in molecular ecology: echoes of the modern synthesis.Molecular Ecology, 21, 4171-4189. |
[13] | Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences.Nature, 475, 493-496. |
[14] | Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them.Molecular Ecology, 24, 3223-3231. |
[15] | Nestmann S, Sretenovic Rajicic T, Dehmer KJ, Fischer M, Schumacher J, Roscher C (2011) Plant species diversity and composition of experimental grasslands affect genetic differentiation of Lolium perenne populations.Molecular Ecology, 20, 2188-2203. |
[16] | Nielsen R, Beaumont MA (2009) Statistical inferences in phylogeography.Molecular Ecology, 18, 1034-1047. |
[17] | Schenekar T, Weiss S (2011) High rate of calculation errors mismatch distribution analysis results in numerous false in- ferences of biological importance.Heredity, 107, 511-512. |
[18] | Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion?Nature Reviews Genetics, 5, 63-69. |
[19] | Schöb C, Kerle S, Karley AJ, Morcillo L, Pakeman RJ, Newton AC, Brooker RW (2015) Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.New Phytologist, 205, 720-730. |
[1] | 陈楠, 张全国. 实验进化研究途径[J]. 生物多样性, 2024, 32(9): 24171-. |
[2] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[3] | 葛颂. 中国植物系统和进化生物学研究进展[J]. 生物多样性, 2022, 30(7): 22385-. |
[4] | 肖钰, 王茜, 何梓晗, 李玲玲, 胡新生. 基于生物学物种定义探讨物种形成理论与验证的研究进展[J]. 生物多样性, 2022, 30(5): 21480-. |
[5] | 蔡新宇, 毛晓伟, 赵毅强. 家养动物驯化起源的研究方法与进展[J]. 生物多样性, 2022, 30(4): 21457-. |
[6] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[7] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[8] | 李敏岚, 王超, 王瑞武. 路径依赖下的物种形成机制[J]. 生物多样性, 2021, 29(3): 409-418. |
[9] | 范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞. 红砂基因组大小变异及物种分化[J]. 生物多样性, 2021, 29(10): 1308-1320. |
[10] | 胡颖, 王茜, 张新新, 周玮, 陈晓阳, 胡新生. 叶绿体DNA标记在谱系地理学中的应用研究进展[J]. 生物多样性, 2019, 27(2): 219-234. |
[11] | 汪浩, 张锐, 张娇, 沈慧, 戴锡玲, 严岳鸿. 转录组测序揭示翼盖蕨(Didymochlaena trancatula)的全基因组复制历史[J]. 生物多样性, 2019, 27(11): 1221-1227. |
[12] | 李霖锋, 刘宝. 表观遗传变异在植物杂交与多倍化过程中的作用[J]. 生物多样性, 2017, 25(6): 600-607. |
[13] | 王玉国. 自然杂交与物种形成[J]. 生物多样性, 2017, 25(6): 565-576. |
[14] | 邱英雄, 鹿启祥, 张永华, 曹亚男. 东亚第三纪孑遗植物的亲缘地理学: 现状与趋势[J]. 生物多样性, 2017, 25(2): 136-146. |
[15] | 张德兴. 为什么在物种概念上难以达成共识?[J]. 生物多样性, 2016, 24(9): 1009-1013. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn