Biodiversity Science ›› 2019, Vol. 27 ›› Issue (8): 873-879.doi: 10.17520/biods.2019060

Previous Article     Next Article

Potential distribution and ecological niches of four butt-rot pathogenic fungi in Northeast China

Hai-Sheng Yuan1, *(), Yulian Wei1, Liwei Zhou1, Wenmin Qin1, Baokai Cui2, Shuanghui He2   

  1. 1. CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164
    2. Institute of Microbiology, Beijing Forestry University, Beijing 100083
  • Received:2019-02-28 Accepted:2019-04-25 Online:2019-09-25
  • Yuan Hai-Sheng E-mail:hsyuan@iae.ac.cn

Lignicolous fungi, including dozens of butt-rot pathogenic fungi, are abundant in Northeast China. In the past decades, many investigations have been carried out on fungal species diversity, and thus plentiful species distribution data has been obtained. However, it is not clear whether there remains a region that has yet to be investigated for the presence of fungal species. In this study, four representative butt-rot pathogenic fungi, Fomitopsis pinicola, Porodaedalea laricis, Piptoporus betulinus and Trametes suaveolens, of Northeast China were selected. Their geographical distribution data and the correlating environmental factors were used to model their potential distribution using the maximum entropy model (MaxEnt). The area under the receiver operating characteristic curve (AUC) was examined to evaluate the model performance. Thus, the ecological niches of these species were analyzed. The results showed that all the species prediction models obtained high AUC values (0.990, 0.990, 0.989 and 0.967), which suggests that the prediction models were effective for the four species. The most effective environmental variables, which were the precipitation of warmest quarter (Bio18), the temperature annual range (Bio7) and the mean temperature of driest quarter (Bio9), were shown to contribute more to the species distribution models than other factors. The results delineate possible distribution ranges for the four pathogenic fungi in Northeast China, thereby offering forest managers a guide for where to focus prevention and treatment efforts for these pathogenic fungi.

Key words: MaxEnt, AUC, butt-rot pathogenic fungi, ecological niches

Fig. 1

Basidiocarps of four butt-rot pathogenic fungi. (a) Fomitopsis pinicola; (b) Porodaedalea laricis; (c) Piptoporus betulinus; (d) Trametes suaveolens."

Fig. 2

Collection points of four butt-rot pathogenic fungi from Northeast China"

Table 1

Training and test AUC values obtained in the models for four butt-rot pathogenic fungi"

物种
Species
记录点
Registered presence
训练点数
Number of training points
训练AUC
Training AUC
测试AUC
Test AUC
红缘拟层孔菌 Fomitopsis pinicola 29 9 0.984 0.990
落叶松锈迷孔菌 Porodaedalea laricis 9 3 0.933 0.990
桦剥管孔菌 Piptoporus betulinus 21 7 0.984 0.989
香栓孔菌 Trametes suaveolens 24 7 0.981 0.967

Fig. 3

Potential distributions of four butt-rot pathogenic fungi. (a) Fomitopsis pinicola; (b) Porodaedalea laricis; (c) Piptoporus betulinus; (d) Trametes suaveolens. White squares are training points, purple squares are testing points."

Table 2

Environmental variables used to create the species distribution model and their percentage contribution to model performance"

编号
Code
环境变量
Environmental variable
贡献率 Contribution (%)
红缘拟层孔菌
Fomitopsis
pinicola
落叶松锈迷孔菌
Porodaedalea
laricis
桦剥管孔菌
Piptoporus betulinus
香栓孔菌
Trametes suaveolens
Bio1 年均温 Annual mean temperature (℃) 6.1 0 11.8 2.9
Bio2 昼夜温差月均值
Mean diurnal range (mean of monthly (max - min temp)) (℃)
0 0.9 0 0
Bio3 等温性 Isothermality ((Bio2/Bio7) × 100) 5.2 0 5.6 4.1
Bio4 温度季节性变化标准差
Temperature seasonality (standard deviation × 100) (C of V)
16.6 0 6.6 34.9
Bio5 最暖月最高温 Maximum temperature of warmest month (℃) 0 0 0 0
Bio6 最冷月最低温 Minimum temperature of coldest month (℃) 0.5 0 2.9 1.7
Bio7 温度的年较差 Temperature annual range (Bio5 - Bio6) (℃) 29.9 4.3 17.6 4.2
Bio8 最湿季均温 Mean temperature of wettest quarter (℃) 0 0 0 0.3
Bio9 最干季均温 Mean temperature of driest quarter (℃) 7 78.8 18.1 0
Bio10 最暖季均温 Mean temperature of warmest quarter (℃) 0 0 0 0
Bio11 最冷季均温 Mean temperature of coldest quarter (℃) 1.5 0 6.7 2.1
Bio12 年降水量 Annual precipitation (mm) 0 0 0 0
Bio13 最湿月降水量 Precipitation of wettest month (mm) 0 0 0.6 0
Bio14 最干月降水量 Precipitation of driest month (mm) 0 0 0 0
Bio15 降水量季节性变异系数
Precipitation seasonality (coefficient of variation) (C of V)
0.5 1.7 0 4.4
Bio16 最湿季降水量 Precipitation of wettest quarter (mm) 0 0 0 0
Bio17 最干季降水量 Precipitation of driest quarter (mm) 5.5 0 4.9 6.9
Bio18 最暖季降水量 Precipitation of warmest quarter (mm) 25 6.2 23.5 36.3
Bio19 最冷季降水量 Precipitation of coldest quarter (mm) 0.8 0 0.4 0.2
ELE 海拔 Elevation (m) 1.4 8.1 1.2 1.8

Fig. 4

Response curves of main climate factors in distribution models of four butt-rot pathogenic fungi"

Fig. 5

Three-dimensional climate niches of four butt-rot pathogenic fungi"

1 Bao QZ, Wei YL, Yuan HS, Li YR (2006) A new butt-rot disease in tropical area from Yunnan Province. Forest Research, 19, 246-247.(in Chinese with English abstract)
[ 包晴忠, 魏玉莲, 袁海生, 李永儒 ( 2006) 中国云南一种新的阔叶树干基腐朽病. 林业科学研究, 19, 246-247.]
2 Dai YC (2005) Illustrations of Pathogenic Wood-decaying Fungi in China. Science Press, Beijing.(in Chinese)
[ 戴玉成 ( 2005) 中国林木病原腐朽菌图志. 科学出版社, 北京.]
3 Dai YC (2010) Species diversity of wood-decaying fungi in Northeast China. Mycosystema, 29, 801-818.(in Chinese with English abstract)
[ 戴玉成 ( 2010) 中国东北地区木材腐朽菌的多样性. 菌物学报, 29, 801-818.]
4 Dai YC (2012) Pathogenic wood-decaying fungi on woody plants in China. Mycosystema, 31, 493-509.(in Chinese with English abstract)
[ 戴玉成 (2012) 中国木本植物病原木材腐朽菌研究. 菌物学报, 31, 493-509.]
5 Dai YC, Cui BK, Yuan HS, Li BD ( 2007) Pathogenic wood- decaying fungi in China. Forest Pathology, 37, 105-120.
6 Dai YC, Qin GF, Xu MQ ( 2000) The forest pathogens of root and butt rot in northeast China. Forest Research, 13, 15-22.(in Chinese with English abstract)
[ 戴玉成, 秦国夫, 徐梅卿 ( 2000) 中国东北地区的立木腐朽菌. 林业科学研究, 13, 15-22.]
7 Jiang JQ, Yuan HS ( 2005) Two newly described polypores on Populus in Northeast China. Forest Research, 18, 280-283.(in Chinese with English abstract)
[ 姜俊清, 袁海生 (2005) 中国东北杨树上多孔菌二新记录. 林业科学研究, 18, 280-283.]
8 Marchioro CA, Krechemer FS ( 2018) Potential global distribution of Diabrotica species and the risks for agricultural production. Pest Management Science, 74, 2100-2109.
9 Pearce JL, Boyce MS ( 2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405-412.
10 Pearce J, Ferrier S (2000) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling, 128, 127-147.
11 Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT ( 2007) Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117.
12 Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31, 161-175.
13 Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
14 Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: A Jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9-17.
15 Wei YL, Dai YC ( 2004) The ecological function of wood- inhabiting fungi in forest ecosystem. Chinese Journal of Applied Ecology, 15, 1935-1938.(in Chinese with English abstract)
[ 魏玉莲, 戴玉成 ( 2004) 木材腐朽菌在森林生态系统中的功能. 应用生态学报, 15, 1935-1938.]
16 Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Elith J, Dudik M, Ferrier S, Huettman F, Leathwick JR, Lehmann A, Lohamnn L, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcC, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams SE, Zimmermann NE ( 2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763-773.
17 Yuan HS, Wang L, Yu CJ, Dai YC (2008) Two new butt-rot pathogens on broad leaved tree in China. Forest Research, 21, 248-252.(in Chinese with English abstract)
[ 袁海生, 王琳, 余长军, 戴玉成 ( 2008) 中国阔叶树干基腐朽两种新病原菌. 林业科学研究, 21, 248-252.]
18 Yuan HS, Wei YL, Qin WM, Zhou LW (2009) Lignicolous fungi of eastern Less Hinggan Mts. of Heilongjiang Province. Mycosystema, 28, 36-43.
19 Yuan HS, Wei YL, Wang XG ( 2015) Maxent modeling for predicting potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecology, 17, 140-145.
[1] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. (2019) Species diversity and potential distribution of Chiroptera on Hainan Island, China . Biodiv Sci, 27(4): 400-408.
[2] Hongfei Zhuang,Yinbo Zhang,Wei Wang,Yueheng Ren,Fangzheng Liu,Jinhong Du,Yue Zhou. (2018) Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case . Biodiv Sci, 26(9): 931-940.
[3] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. (2018) Amphibian species richness patterns in karst regions in Southwest China and its environmental associations . Biodiv Sci, 26(9): 941-950.
[4] Zhongyi Zhou, Ran Liu, Shuna Shi, Yanjun Su, Wenkai Li, Qinghua Guo. (2018) Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California . Biodiv Sci, 26(8): 878-891.
[5] Xiaoyu Wu,Shikui Dong,Shiliang Liu,Quanru Liu,Yuhui Han,Xiaolei Zhang,Xukun Su,Haidi Zhao,Jing Feng. (2018) Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model . Biodiv Sci, 26(2): 138-148.
[6] Shaopeng Cui,Xiao Luo,Chunwang Li,Huijian Hu,Zhigang Jiang. (2018) Predicting the potential distribution of white-lipped deer using the MaxEnt model . Biodiv Sci, 26(2): 171-176.
[7] Meixiang He,Lixin Chen,Gai Luo,Xiaodong Gu,Ge Wang,Jianghong Ran. (2018) Suitable habitat prediction and overlap analysis of two sympatric species, giant panda (Ailuropoda melanoleuca) and Asiatic black bear (Ursus thibetanus) in Liangshan Mountains . Biodiv Sci, 26(11): 1180-1189.
[8] Jianmin Chu, Yifu Li, Lei Zhang, Bin Li, Mingyuan Gao, Xiaoqian Tang, Jianwei Ni, Xinqiao Xu. (2017) Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata . Biodiv Sci, 25(8): 799-806.
[9] Lingxiao Ying,Ye Liu,Shaotian Chen,Zehao Shen. (2016) Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximum-entropy (Maxent) model . Biodiv Sci, 24(4): 453-461.
[10] Yao LI, Xing-Wang ZHANG, Yan-Ming FANG. (2016) Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum . Chin J Plan Ecolo, 40(11): 1164-1178.
[11] Xiangyan Cui,Wenjuan Wang,Xiaoqiang Yang,Shu Li,Shengyuan Qin,Jun Rong. (2016) Potential distribution of wild Camellia oleifera based on ecological niche modeling . Biodiv Sci, 24(10): 1117-1128.
[12] Gengping Zhu,Huijie Qiao. (2016) Effect of the Maxent model’s complexity on the prediction of species potential distributions . Biodiv Sci, 24(10): 1189-1196.
[13] Min Xiong,Shuang Tian,Zhirong Zhang,Dengmei Fan,Zhiyong Zhang. (2014) Population genetic structure and conservation units of Sinomanglietia glauca (Magnoliaceae) . Biodiv Sci, 22(4): 476-484.
[14] MA Song-Mei, NIE Ying-Bin, GENG Qing-Long, and WANG Rong-Xue. (2014) Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica . Chin J Plan Ecolo, 38(3): 262-269.
[15] GUO Yan-Long, WEI Hai-Yan, LU Chun-Yan, ZHANG Hai-Long, and GU Wei. (2014) Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change . Chin J Plan Ecolo, 38(3): 249-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed