Biodiv Sci ›› 2021, Vol. 29 ›› Issue (6): 697-711.  DOI: 10.17520/biods.2020482

• Original Papers: Plant Diversity •     Next Articles

Effects and conservation assessment of climate change on the dominant group—The genusCinnamomum of subtropical evergreen broad-leaved forests

Run Zhou1,2, Xiuqin Ci1,3, Jianhua Xiao1,2, Guanlong Cao1,2, Jie Li1,3,*()   

  1. 1 Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303
  • Received:2020-12-28 Accepted:2021-03-18 Online:2021-06-20 Published:2021-04-22
  • Contact: Jie Li


Aims: The Chinese subtropical evergreen broad-leaved forest is facing great threats, caused by global climate change, and its protection needs to be solved urgently. Cinnamomum is the dominant genus for the subtropical evergreen broad-leaved forest. Cinnamomum is fundamental to the stability of the subtropical evergreen broad-leaved forest ecosystem due to its large number of individuals, large coverage, high biomass, and strong living ability. Here, we predict the potential spatial distribution pattern (potential distribution area and species richness hotspots area) for Cinnamomum under five periods of bioclimatic, overlay the nature reserves on species richness hotspots to evaluate the conservation status of Cinnamomum, and make reasonable suggestions for the nature reserves, national parks, and other protected areas.

Methods: In this study, we collected occurrence data for 47 species of Cinnamomum in China and bioclimatic data during five periods (i.e. Last Interglacial (LIG), Last Glacial Maximum (LGM), Mid Holocene (MH), current, and future). Using the bioclimatic data, we predicted the potential distribution and species richness hotspots of Cinnamomum using the maximum-entropy (MaxEnt) model, and overlay the nature reserve on species richness hotspots of Cinnamomum to evaluate the conservation status, especially in the subtropical evergreen broad-leaved forest nature reserves.

Results: The change in the potential distribution area for Cinnamomum was not significant among the five time periods. However, the area of potential distribution for this group has contracted and expanded in the mountains and plains, especially at the border between subtropical and temperate regions. The hotspots for species richness did change significantly among the five periods. Among these periods, the potential distribution area of Cinnamomum during the LGM was the largest, and 96%, 88%, and 37% higher than the LIG, MH, and current time period, respectively. For the future scenarios (~2080 years), the area of species richness hotspots will contract 8.4% for representative concentration pathways (RCP) 2.6 and 10.0% for RCP8.5. With the increase of greenhouse gas emissions, the degree of contraction will be sharper. Through conservation assessment, species richness hotspots of Cinnamomumare mainly located in southeastern Sichuan, southern Guizhou, Guangxi, and Guangdong provinces. Only 7.5% of species richness hotspots are distributed in nature reserves.

Conclusions: The distribution center of Cinnamomum is mainly located in southeastern Sichuan and southern China, and the future climate change will have a negative impact on species richness hotspots for this genus. Therefore, the management and planning for the nature reserve, national park, and other protected areas should consider southeastern Sichuan and southern China as areas in need of more protection.

Key words: climate change, subtropical evergreen broad-leaved forest, dominant group, Cinnamomum, nature reserve assessment, MaxEnt model