Biodiv Sci ›› 2021, Vol. 29 ›› Issue (6): 759-769. DOI: 10.17520/biods.2020268
Special Issue: 传粉生物学; 昆虫多样性与生态功能
• Original Papers: Animal Diversity • Previous Articles Next Articles
Yuhan Shi1,2, Zongxin Ren1, Weijia Wang1,2, Xin Xu1,2, Jie Liu1, Yanhui Zhao1, Hong Wang1,*()
Received:
2020-07-03
Accepted:
2020-08-26
Online:
2021-06-20
Published:
2020-09-20
Contact:
Hong Wang
Yuhan Shi, Zongxin Ren, Weijia Wang, Xin Xu, Jie Liu, Yanhui Zhao, Hong Wang. Predicting the spatial distribution of three Astragalusspecies and their pollinating bumblebees in the Sino-Himalayas[J]. Biodiv Sci, 2021, 29(6): 759-769.
物种 Species | AUC ± SD | TSS ± SD | 阈值 Cloglog threshold (TH ± SD) |
---|---|---|---|
弯齿黄耆 Astragalus camptodontus | 0.996 ± 0.001 | 0.93 ± 0.02 | 0.37 ± 0.16 |
黑毛黄耆 Astragalus pullus | 0.992 ± 0.001 | 0.91 ± 0.02 | 0.33 ± 0.11 |
笔直黄耆 Astragalus strictus | 0.960 ± 0.003 | 0.85 ± 0.01 | 0.34 ± 0.03 |
橘尾熊蜂 Bombus friseanus | 0.991 ± 0.001 | 0.88 ± 0.01 | 0.39 ± 0.07 |
红束熊蜂 Bombus rufofasciatus | 0.985 ± 0.002 | 0.87 ± 0.01 | 0.32 ± 0.06 |
Table1 Area under the receiver operating characteristic curve (AUC), true skill statistic (TSS) and cloglog threshold (TH) of MaxEnt
物种 Species | AUC ± SD | TSS ± SD | 阈值 Cloglog threshold (TH ± SD) |
---|---|---|---|
弯齿黄耆 Astragalus camptodontus | 0.996 ± 0.001 | 0.93 ± 0.02 | 0.37 ± 0.16 |
黑毛黄耆 Astragalus pullus | 0.992 ± 0.001 | 0.91 ± 0.02 | 0.33 ± 0.11 |
笔直黄耆 Astragalus strictus | 0.960 ± 0.003 | 0.85 ± 0.01 | 0.34 ± 0.03 |
橘尾熊蜂 Bombus friseanus | 0.991 ± 0.001 | 0.88 ± 0.01 | 0.39 ± 0.07 |
红束熊蜂 Bombus rufofasciatus | 0.985 ± 0.002 | 0.87 ± 0.01 | 0.32 ± 0.06 |
Fig. 2 Suitable distribution of three Astragalus species and their pollinating bumblebees at near current (1970-2000) and spatial change at 2100 (2081-2100) two scenarios (ssp245 and ssp585)
Fig. 3 Change of spatial match of three Astragalusspecies and their pollinating bumblebees at near current (1970-2000) and at 2100 (2081-2100) two scenarios (ssp245 and ssp585). The black part indicates the area where the pollinator also exists in the plant distributions and the grey part indicates the area where only plants are distributed.
物种 Species (Astragalus × pollinators) | 空间匹配范围SMR (×105km2) | SMR变化百分比 Percentage change in spatially matched range (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus ×Bombus friseanus | 1.92 | 74.61 | 114.70 | -12.09 | -25.94 | -11.53 | -24.56 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 2.96 | 29.70 | 65.46 | -7.69 | -0.99 | 4.81 | 5.22 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 3.28 | 32.98 | 53.50 | -1.07 | -3.77 | 225.57 | 294.51 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 6.65 | 63.91 | 112.18 | -7.82 | -8.32 | -35.54 | -25.80 |
Table 2 Percentage change in spatially matched range of three Astragalusspecies and their pollinating bumblebees in the future climate change scenario. First column values indicate the spatially matched range of three Astragalus species and their pollinating bumblebees at near current (1970-2000).
物种 Species (Astragalus × pollinators) | 空间匹配范围SMR (×105km2) | SMR变化百分比 Percentage change in spatially matched range (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus ×Bombus friseanus | 1.92 | 74.61 | 114.70 | -12.09 | -25.94 | -11.53 | -24.56 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 2.96 | 29.70 | 65.46 | -7.69 | -0.99 | 4.81 | 5.22 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 3.28 | 32.98 | 53.50 | -1.07 | -3.77 | 225.57 | 294.51 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 6.65 | 63.91 | 112.18 | -7.82 | -8.32 | -35.54 | -25.80 |
物种 Species (Astragalus × pollinators) | 空间匹配 Spatial match (%) | 空间匹配变化百分比 Percentage change in spatial match (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus × Bombus friseanus | 78.76 | 6.93 | -0.03 | 4.52 | 8.26 | 5.19 | 10.27 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 57.22 | 13.28 | -11.79 | 8.44 | 6.03 | 23.12 | 23.82 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 16.03 | 0.47 | 0.55 | 3.13 | -1.94 | 239.36 | 301.99 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 32.51 | 23.83 | 45.80 | -7.82 | -30.74 | -32.81 | -24.39 |
Table 3 Percentage change in spatial match of three Astragalusspecies and their pollinating bumblebees in the future climate change scenario. First column values indicate the percentage of the range of each Astragalus species that is shared with its pollinating bumblebees at near current (1970-2000), that is spatial match (%).
物种 Species (Astragalus × pollinators) | 空间匹配 Spatial match (%) | 空间匹配变化百分比 Percentage change in spatial match (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus × Bombus friseanus | 78.76 | 6.93 | -0.03 | 4.52 | 8.26 | 5.19 | 10.27 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 57.22 | 13.28 | -11.79 | 8.44 | 6.03 | 23.12 | 23.82 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 16.03 | 0.47 | 0.55 | 3.13 | -1.94 | 239.36 | 301.99 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 32.51 | 23.83 | 45.80 | -7.82 | -30.74 | -32.81 | -24.39 |
Fig. 4 Range size (×105 km2) of three Astragalusspecies and considering the geographical distribution of pollinating bumblebees at near current (1970-2000) and at 2100 (2081-2100) two scenarios (ssp245 and ssp585).
[1] |
Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: Prevalence, Kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43,1223-1232.
DOI URL |
[2] |
Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature, 391,238-239.
DOI URL |
[3] |
Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: Understanding interaction networks across time, space, and global change. American Journal of Botany, 98,528-538.
DOI PMID |
[4] |
Byers DL (2017) Studying plant-pollinator interactions in a changing climate: A review of approaches. Applications in Plant Sciences, 5,1700012.
DOI URL |
[5] |
Clement SL, Griswold TL, Rust RW, Hellier BC, Stout DM (2006) Bee associates of flowering Astragalus and Onobrychis genebank accessions at a Snake River site in eastern Washington . Journal of the Kansas Entomological Society, 79,254-260.
DOI URL |
[6] |
Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 53,732-744.
DOI URL |
[7] | Duffy KJ, Johnson SD (2017) Specialized mutualisms may constrain the geographical distribution of flowering plants. Proceedings of the Royal Society B: Biological Sciences, 284,20171841. |
[8] |
Gorostiague P, Sajama J, Ortega-Baes P (2018) Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biological Conservation, 226,247-255.
DOI URL |
[9] |
Green TW, Bohart GE (1975) The pollination ecology of Astragalus cibarius and Astragalus utahensis (Leguminosae). American Journal of Botany, 62,379-386.
DOI URL |
[10] |
He MX, Chen LX, Luo G, Gu XD, Wang G, Ran JH (2018) Suitable habitat prediction and overlap analysis of two sympatric species, giant panda ( Ailuropoda melanoleuca) and Asiatic black bear ( Ursus thibetanus) in Liangshan Mountains . Biodiversity Science, 26,1180-1189. (in Chinese with English abstract)
DOI URL |
和梅香, 陈俪心, 罗概, 古晓东, 王戈, 冉江洪 (2018) 凉山山系大熊猫和黑熊适宜生境预测及重叠分析. 生物多样性, 26,1180-1189.]
DOI |
|
[11] |
He X, Burgess KS, Gao LM, Li DZ (2019a) Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains . Plant Diversity, 41,26-32.
DOI URL |
[12] |
He X, Burgess KS, Yang XF, Ahrends A, Gao LM, Li DZ (2019b) Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya-Hengduan Mountains region . Ecology and Evolution, 9,4055-4064.
DOI URL |
[13] |
Hughes AC (2017) Mapping priorities for conservation in Southeast Asia. Biological Conservation, 209,395-405.
DOI URL |
[14] | Johnson DM, Büntgen U, Frank DC, Kausrud K, Haynes KJ, Liebhold AM, Esper J, Stenseth NC (2010) Climatic warming disrupts recurrent alpine insect outbreaks. Proceedings of the National Academy of Sciences, USA, 107,20576-20581. |
[15] |
Karron JD (1987) The pollination ecology of co-occuring geographically restricted and widespread species of Astragalus (Fabaceae). Biological Conservation, 39,179-193.
DOI URL |
[16] | Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, USA, 105,11823-11826. |
[17] |
Lenoir J, Gégout JC, Marquet PAde Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320,1768-1771.
DOI URL |
[18] | Li LH, Liu HY, Lin ZS, Jia JH, Liu X (2017) Identifying priority areas for monitoring the invasion of Solidago canadensis based on MaxEnt and Zonation . Acta Ecologica Sinica, 37,3124-3132. (in Chinese with English abstract) |
李丽鹤, 刘会玉, 林振山, 贾俊鹤, 刘翔 (2017) 基于MaxEnt和Zonation的加拿大一枝黄花入侵重点监控区确定. 生态学报, 37,3124-3132.] | |
[19] |
Li YC, Li MY, Li C, Liu ZZ (2020) Optimized MaxEnt model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China . Forests, 11,302.
DOI URL |
[20] |
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37,637-669.
DOI URL |
[21] |
Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43,405-412.
DOI URL |
[22] |
Radosavljevic A, Anderson RP (2014) Making better MaxEnt models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41,629-643.
DOI URL |
[23] |
Raes N, Roos MC, Slik JWF, van Loon EE, ter Steege H (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography, 32,180-192.
DOI URL |
[24] |
Richards KW (1987) Diversity, density, efficiency, and effectiveness of pollinators of Cicer milkvetch, Astragalus cicer L . Canadian Journal of Zoology, 65,2168-2176.
DOI URL |
[25] |
Shi XY, Shi XG, Hu Q, Guan TP, Fu Q, Zhang J, Yao M, Li S (2019) Evaluating the potential habitat overlap and predation risk between snow leopards and free-range yaks in the Qionglai Mountains, Sichuan. Biodiversity Science, 27,951-959. (in Chinese with English abstract)
DOI URL |
史晓昀, 施小刚, 胡强, 官天培, 付强, 张剑, 姚蒙, 李晟 (2019) 四川邛崃山脉雪豹与散放牦牛潜在分布重叠与捕食风险评估. 生物多样性, 27,951-959.]
DOI |
|
[26] |
Sosa-Pivatto M, Cosacov A, Baranzelli MC, Iglesias MR, Espíndola A, Sérsic AN (2017) Do 120,000 years of plant-pollinator interactions predict floral phenotype divergence in Calceolaria polyrhiza? A reconstruction using species distribution models . Arthropod-Plant Interactions, 11,351-361.
DOI URL |
[27] | Sun Y, Qin DH, Liu HB (2012) Introduction to treatment of uncertainties for IPCC Fifth Assessment Report. Climate Change Research, 8,150-153. (in Chinese) |
孙颖, 秦大河, 刘洪滨 (2012) IPCC第五次评估报告不确定性处理方法的介绍. 气候变化研究进展, 8,150-153.] | |
[28] |
Tanner DA, Clark C, Pitts JP (2013) Pollination biology of Astragalus phoenix (Fabaceae) with notes on the natural history of its pollinator, Anthophora porterae (Hymenoptera: Apidae) . Western North American Naturalist, 73,373-381.
DOI URL |
[29] |
Tsiftsis S, Djordjević V (2020) Modelling sexually deceptive orchid species distributions under future climates: The importance of plant-pollinator interactions. Scientific Reports, 10,10623.
DOI PMID |
[30] |
Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models. Biodiversity Science, 15,365-372. (in Chinese with English abstract)
DOI URL |
王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007) ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15,365-372.]
DOI |
|
[31] | Williams PH, Huang JX, An JD (2017) Bear wasps of the Middle Kingdom: A decade of discovering China's bumblebees. Antenna, 41,21-24. |
[32] |
Williams PH, Tang Y, Yao J, Cameron S (2009) The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini) . Systematics and Biodiversity, 7,101-189.
DOI URL |
[33] | Xin XG, Wu TW, Zhang J, Zhang F, Li WP, Zhang YW, Lu YX, Fang YJ, Jie WH, Zhang L, Dong M, Shi XL, Li JL, Chu M, Liu QX, Yan JH (2019) Introduction of BCC models and its participation in CMIP6. Climate Change Research, 15,533-539. (in Chinese with English abstract) |
辛晓歌, 吴统文, 张洁, 张芳, 李伟平, 张艳武, 路屹雄, 房永杰, 颉卫华, 张莉, 董敏, 史学丽, 李江龙, 储敏, 刘茜霞, 颜京辉 (2019) BCC模式及其开展的CMIP6试验介绍. 气候变化研究进展, 15,533-539.] | |
[34] |
Zhang L, Jing ZN, Li ZY, Liu Y, Fang SZ (2019) Predictive modeling of suitable habitats for Cinnamomum camphora (L.) Presl using MaxEnt model under climate change in China . International Journal of Environmental Research and Public Health, 16,3185.
DOI URL |
[35] |
Zhang XL, Li YC, Wang YY, Cai HY, Zeng H, Wang ZH (2019) Influence of future climate change in suitable habitats of tea in different countries. Biodiversity Science, 27,595-606. (in Chinese with English abstract)
DOI URL |
张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒 (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27,595-606.]
DOI |
|
[36] | Zhang XQ (2018) Geographical Distribution and Climatic Suitability of Typical Eco-economical Tree Species in the Dryland of Northwest China. PhD dissertation, Research Center for Eco-Environments and Soils and Water Conservation, Chinese Academy of Sciences & Ministry of Education, Xi'an, (in Chinese with English abstract) |
张晓芹 (2018) 西北旱区典型生态经济树种地理分布与气候适宜性研究. 博士学位论文.] | |
[37] |
Zhang XQ, Li GQ, Du S (2018) Predicting the influence of future climate change on the suitable distribution areas of Elaeagnus angustifolia. Chinese Journal of Applied Ecology, 29,3213-3220. (in Chinese with English abstract)
DOI PMID |
张晓芹, 李国庆, 杜盛 (2018) 未来气候变化对沙枣适宜分布区的影响预测. 应用生态学报, 29,3213-3220.]
PMID |
[1] | Weijie Shu, Hua He, Luo Zeng, Zhirong Gu, DunYan Tan, Xiaochen Yang. Spatial distribution and sexual dimorphism of dioecious Arisaema erubescens [J]. Biodiv Sci, 2024, 32(6): 24084-. |
[2] | Qi Wu, Xiaoqing Zhang, Yuting Yang, Yibo Zhou, Yi Ma, Daming Xu, Xingfeng Si, Jian Wang. Spatio-temporal changes in biodiversity of epiphyllous liverworts in Qingyuan Area of Qianjiangyuan-Baishanzu National Park, Zhejiang Province [J]. Biodiv Sci, 2024, 32(4): 24010-. |
[3] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[4] | Yali Zhang, Bingchang Zhang, Kang Zhao, Kaikai Li, Yanjin Liu. Variation of bacterial communities and their driving factors in different types of biological soil crusts in Mu Us sandy land [J]. Biodiv Sci, 2023, 31(8): 23027-. |
[5] | Wei Liu, Ruge Wang, Tianqiao Fan, Nayiman Abudulijiang, Xinhang Song, Shuping Xiao, Ning Guo, Lingying Shuai. Habitat suitability for the Aviceda leuphotes in Mingxi County, Fujian Province [J]. Biodiv Sci, 2023, 31(7): 22660-. |
[6] | Li Feng. On synergistic governance of biodiversity and climate change in the perspective of international law [J]. Biodiv Sci, 2023, 31(7): 23110-. |
[7] | Junyi Yang, Xiao Guan, Junsheng Li, Jingjing Liu, Haojing Hao, Huairui Wang. Spatial patterns and interrelationships between biodiversity and ecosystem services in the Wujiang River Basin [J]. Biodiv Sci, 2023, 31(7): 23061-. |
[8] | Xue Yao, Xing Chen, Zun Dai, Kun Song, Shichen Xing, Hongyu Cao, Lu Zou, Jian Wang. Importance of collection strategy on detection probability and species diversity of epiphyllous liverworts [J]. Biodiv Sci, 2023, 31(4): 22685-. |
[9] | Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials [J]. Biodiv Sci, 2023, 31(3): 22311-. |
[10] | Qiongyue Zhang, Zhuodi Deng, Xuebin Hu, Zhifeng Ding, Rongbo Xiao, Chen Xiu, Zhenghao Wu, Guang Wang, Donghui Han, Yuke Zhang, Jianchao Liang, Huijian Hu. The impact of urbanization on regional bird distribution and habitat connectivity in the Guangdong-Hong Kong-Macao Greater Bay Area [J]. Biodiv Sci, 2023, 31(3): 22161-. |
[11] | Jiawen Sang, Chuangye Song, Ningxia Jia, Yuan Jia, Changcheng Liu, Xianguo Qiao, Lin Zhang, Weiying Yuan, Dongxiu Wu, Linghao Li, Ke Guo. Vegetation survey and mapping on the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2023, 31(3): 22430-. |
[12] | Jinzhou Wang, Jing Xu. Nature-based solutions for addressing biodiversity loss and climate change: Progress, challenges and suggestions [J]. Biodiv Sci, 2023, 31(2): 22496-. |
[13] | Muqing Lin, Yingming Zhang, Fang Ouyang, Zufei Shu, Chaodong Zhu, Zhishu Xiao. Spatial distribution of species diversity of solitary wasps (Vespidae) and its responses to environmental factors in the Chebaling National Nature Reserve, Guangdong Province [J]. Biodiv Sci, 2023, 31(2): 22310-. |
[14] | Xiaofeng Wang, Jiesheng Rao, Tao Yang, Wencong Liu, Xi Tian, Xi Chen, Qiming Liu, Yanxiao Xu, Qiuyu Zhang, Hongqiang Zhang, Xu Zhang, Xiaokun Ou, Zehao Shen. Spatial variation and determinants of woody plant species diversity in a semi-humid evergreen broad-leaved forest in the Jizu Mountains, Yunnan [J]. Biodiv Sci, 2023, 31(11): 23217-. |
[15] | Jiahe Cui, Zhiyong Li, Yuchi Wang, Qiang Sun, Na Sha, Zijing Li, Yantao Wu, Yabo Shi, Ying Han, Mingle Li, Lixin Wang, Liqing Zhao, Cunzhu Liang. A dataset describing the community characteristics and geographic distribution of Krascheninnikovia compacta [J]. Biodiv Sci, 2023, 31(10): 23172-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn