Biodiversity Science ›› 2019, Vol. 27 ›› Issue (4): 419-432.doi: 10.17520/biods.2018316

• Original Papers • Previous Article     Next Article

Effects of transgenic maize on arthropod diversity

Ma Yanjie1, He Haopeng1, Shen Wenjing2, Liu Biao2, *(), Xue Kun1, 2, *()   

  1. 1 College of Life and Environmental Sciences, Minzu University of China, Beijing 100081
    2 Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042
  • Received:2018-11-23 Accepted:2019-02-28 Online:2019-06-05
  • Liu Biao,Xue Kun E-mail:liubiao@nies.org;xuekun@muc.edu.cn

The species and numbers of arthropods in fields of transgenic herbicide-tolerant (EPSPS) and insect-resistant (Cry1Ab) maize DBN9936, receptor maize DBN318, conventional maize Xianyu 335, and spraying herbicide transformant DBN9936, were investigated to assess the effect of genetically modified maize on the arthropod communities. Direct observations, pit-fall trapping and longitudinal section methods were used to investigate the field arthropod species in 2015 and 2017. A cluster analysis and species accumulation curves, as well as the Margalef richness index, Shannon-Wiener index and Simpson index, Pielou evenness index, dominant concentration index, community similarity index, were calculated and compared. The recorded arthropod species belonged to 20 orders and 80 families. The number of Lepidopteron insects in the fields of herbicide-free transformant DBN9936 (2015: 10.3 ± 2.6, 2017: 3.3 ± 1.7) and transformant DBN9936 spraying herbicides (2015: 6.0 ± 1.5, 2017: 17.0 ± 0.6) were significantly lower than the corresponding parameters of receptor DBN318 (2015: 20.0 ± 3.2, 2017: 24.0 ± 6.0) and Xianyu 335 (2015: 21.0 ± 8.9, 2017: 26.7 ± 2.0). The species accumulation curves show a typical parabola and there was little difference in the overall species richness. There were no significant differences in the total number of arthropods, functional group composition, richness, diversity, evenness and dominant concentration in the maize fields and there was a high similarity between the arthropods communities. The dynamic of the richness index, diversity index, evenness index, dominant concentration index and community similarity index of those arthropods in the maize fields tended to be consistent. Transformant DBN9936 has obvious resistance to Lepidopteron insects and has no significant negative effects on non-target arthropods. The results suggest that the transformant DBN9936 maize has no significant effect on community richness, diversity, evenness and dominance concentration of arthropods in the fields.

Key words: genetically modified maize, biodiversity, arthropods, diversity index, biosafety

Table 1

The cumulative number of main arthropods in the functional groups of four maize treatments in 2015 and 2017 (number of arthropods every 50 plants)"

功能群
Functional groups
主要类群
Major groups
‘DBN9936’ ‘DBN318’ ‘先玉335’
Xianyu 335
‘DBN9936’喷除草剂
DBN9936 + herbicide
P
2015
主要害虫
Main pest
鳞翅目 Lepidopteron 10.3 ± 2.6a 20.0 ± 3.2a 21.0 ± 8.9a 6.0 ± 1.5a 0.166
长角?科 Entomobryidae 112.3 ± 25.5a 105.7 ± 9.9a 128.3 ± 11.3a 113.7 ± 8.1a 0.765
蚜科 Aphididae 834.0 ± 206.6a 763.3 ± 118.3a 515.7 ± 62.1a 590.0 ± 84.3a 0.341
叶甲科 Chrysomelidae 1,194.0 ± 94.4b 1,308.7 ± 32.9b 1,009.7 ± 56.4a 1,217.3 ± 42.9b 0.047
总和 Total 2,212.3 ± 266.9a 2,258.0 ± 154.5a 1,736.0 ± 37.8a 1,985.7 ± 109.9a 0.176
捕食性天敌
Predatory natural enemy
蜘蛛目 Araneida 43.7 ± 4.6a 52.3 ± 2.2a 59.3 ± 3.8a 54.3 ± 7.7a 0.246
瓢虫科 Coccinellidae 113.7 ± 6.1a 106.3 ± 11.2a 104.3 ± 7.9a 120.0 ± 15.1a 0.720
草蛉科 Chrysopidae 36.3 ± 6.2a 32.3 ± 2.8a 25.3 ± 4.1a 25.3 ± 4.1a 0.288
步甲科 Carabidae 12.7 ± 2.9a 15.0 ± 3.2a 20.7 ± 9.9a 20.0 ± 6.5a 0.808
总和 Total 214.7 ± 8.6a 213.3 ± 10.3a 219.7 ± 3.8a 231.0 ± 5.5a 0.386
寄生性天敌
Parasitic natural enemy
总和 Total 8.7 ± 3.3a 6.7 ± 1.9a 5.7 ± 0.9a 7.7 ± 0.9a 0.742
中性节肢动物
Neutral arthropod
总和 Total 206.7 ± 31.5a 177.7 ± 9.0a 152.0 ± 28.6a 147.0 ± 20.4a 0.339
2017
主要害虫
Main pest
鳞翅目 Lepidopteron 3.3 ± 1.7a 24.0 ± 6.0b 26.7 ± 2.0b 17.0 ± 0.6a 0.005
蚜科 Aphididae 5,357.0 ± 148.5a 5,408.3 ± 324.9a 5,444.0 ± 607.7a 4,751.7 ± 171.3a 0.520
叶甲科 Chrysomelidae 42.3 ± 3.8a 51.0 ± 4.6a 40.0 ± 3.5a 46.7 ± 1.5a 0.213
长角?科 Entomobryidae 86.3 ± 9.8a 95.0 ± 12.5a 93.4 ± 6.6a 97.0 ± 10.0a 0.882
总和 Total 5,880.7 ± 133.5a 5,974.7 ± 334.9a 6,011.7 ± 592.7a 5,321.7 ± 185.8a 0.526
捕食性天敌
Predatory natural enemy
蜘蛛目 Araneida 87.0 ± 8.5a 97.7 ± 12.1a 88.0 ± 3.5a 86.3 ± 5.2a 0.732
瓢虫科 Coccinellidae 235.7 ± 8.7a 211.3 ± 34.0a 221.3 ± 21.9a 250.7 ± 10.4a 0.607
草蛉科 Chrysopidae 51.0 ± 6.5a 41.0 ± 7.0a 39.0 ± 3.5a 54.0 ± 6.7a 0.295
步甲科 Carabidae 36.7 ± 4.5a 49.7 ± 7.5a 39.0 ± 5.6a 45.7 ± 7.1a 0.481
小花蝽 Orius sauteri 57.3 ± 2.3b 36.7 ± 4.3a 39.7 ± 0.9a 39.7 ± 6.8a 0.029
总和 Total 510.7 ± 22.0a 481.3 ± 15.2a 476.7 ± 23.7a 522.0 ± 11.8a 0.298
寄生性天敌
Parasitic natural enemy
总和 Total 7.3 ± 1.8a 9.0 ± 3.8a 8.0 ± 0.6a 7.0 ± 2.0a 0.933
中性节肢动物
Neutral arthropod
总和 Total 166.7 ± 22.0a 181.0 ± 8.6a 150.7 ± 5.5a 153.3 ± 25.2a 0.613

Fig. 1

Species accumulation curves of arthropods of four maize treatments in 2015 and 2017"

Table 2

Species richness index of arthropods of different maize treatments in 2015 and 2017"

ACE
指数
ACE Index
Bootstrap
指数
Bootstrap Index
Jackknife 1
指数
Jackknife 1
Index
实际物
种数
Number
of species
比例
Ratio (%)
2015
植株
Maize plant
51.49 54.25 58.88 48 88.87
地表
Land surface
58.26 51.41 54.96 49 88.25
总体 Total 66.61 65.33 70.96 61 90.56
2017
植株
Maize plant
71.07 71.32 72.97 68 95.11
地表
Land surface
78.65 64.66 72.81 59 80.98
总体 Total 93.36 88.45 93.95 83 89.92

Fig. 2

The Margalef index dynamics of arthropod community of four maize treatments in 2015 and 2017"

Fig. 3

The community similarity index dynamics of arthropod community of four maize treatments in 2015 and 2017"

Fig. 4

The clustering results of the arthropod communities of four maize treatments in 2015 and 2017. Each maize treatment has 3 replicates. The higher the similarity of arthropod species and quantity is, the closer the clustering branches is."

Fig. 5

The biodiversity index dynamics of arthropod community of four maize treatments in 2015 and 2017"

Fig. 6

The Pielou evenness index dynamics of arthropod community of four maize treatments in 2015 and 2017"

Fig. 7

The dominant concentration index dynamics of arthropod community of four maize treatments in 2015 and 2017"

Table 3

Damage degree of four maize treatment by Ostrinia furnacalis and Helicoverpa armigera in 2015 and 2017"

为害指标 Damage parameter and degree ‘DBN9936’ ‘DBN318’ ‘先玉335’
Xianyu 335
‘DBN9936’喷除草剂
DBN9936 + herbicide
2015
蛀孔数(个/50株) Number of apertures every 50 plants 0.0 ± 0.0b 14.3 ± 1.2a 22.0 ± 4.0a 0.0 ± 0.0b
活虫数(头/50株) Number of alive borers every 50 plants 0.3 ± 0.3b 10.3 ± 1.0a 12.5 ± 1.9a 0.3 ± 0.3b
最长隧道长度 Maximum tunnel length (cm) 0.0 16.5 13.0 0.0
平均隧道长度 Average tunnel length (cm) - 6.50 ± 0.56b 4.97 ± 0.40a -
最长穗尖被害长度 Maximum damage length of spike tip (cm) 5.5 7.0 8.0 4.0
平均穗尖被害长度 Average damage length of spike tip (cm) 2.33 ± 1.59a 3.01 ± 0.21a 2.98 ± 0.20a 1.94 ± 0.39a
2017
蛀孔数(个/50株) Number of apertures every 50 plants 8.0 ± 7.9a 16.0 ± 8.1a 8.7 ± 2.4a 5.3 ± 1.8a
活虫数(头/50株) Number of alive borers every 50 plants 3.3 ± 0.3a 10.7 ± 0.5a 6.0 ± 0.1a 2.7 ± 0.2a
最长隧道长度 Maximum tunnel length (cm) 13.5 20.0 20.8 7.0
平均隧道长度 Average tunnel length (cm) 2.97 ± 2.97a 5.92 ± 2.87a 3.68 ± 4.06a 0.87 ± 0.49a
最长穗尖被害长度 Maximum damage length of spike tip (cm) 9.0 27.4 22.8 16.8
平均穗尖被害长度 Average damage length of spike tip (cm) 2.39 ± 1.74a 6.24 ± 1.23a 8.18 ± 2.36a 3.76 ± 3.42a
[1] Arias-Martín M, García M, Castañera P, Ortego F, Farinós GP ( 2016) Farm-scale evaluation of the impact of Cry1Ab Bt maize on canopy nontarget arthropods: A 3-year study. Insect Science, 25, 87-98.
[2] Bhatti MA, Duan J, Head GP, Jiang CJ, Mckee MJ, Nickson TE, Pilcher CL, Pilcher CD ( 2005) Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods. Environmental Entomology, 34, 1336-1345.
doi: 10.1603/0046-225X(2005)034[1336:FEOTIO]2.0.CO;2
[3] Bitzer RJ, Rice ME, Pilcher CD, Pilcher CL, Lam WF ( 2005) Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt corn. Environmental Entomology, 34, 1346-1376.
doi: 10.1603/0046-225X(2005)034[1346:BACSOE]2.0.CO;2
[4] Cai BH ( 2015) Insect Taxonomy. Chemical Industry Press, Beijing. (in Chinese)
[ 蔡邦华 ( 2015) 昆虫分类学. 化学工业出版社, 北京.]
[5] Carrière Y, Williams JL, Crowder DW, Tabashnik BE ( 2018) Genotype-specific fitness cost of resistance to Bt toxin Cry1Ac in pink bollworm. Pest Management Science, 74, 2496-2503.
doi: 10.1002/ps.2018.74.issue-11
[6] Farinos GP, Mdela P, Hernándezcrespo P, Ortego F, Castanera P ( 2008) Diversity and seasonal phenology of aboveground arthropods in conventional and transgenic maize crops in central Spain. Biological Control, 44, 362-371.
doi: 10.1016/j.biocontrol.2007.11.007
[7] Guo JF, He KL, Hellmich RL, Bai SX, Zhang TT, Liu YJ, Ahmed T, Wang ZY ( 2016) Field trials to evaluate the effects of transgenic Cry1Ie maize on the community characteristics of arthropod natural enemies. Scientific Reports, 6, 22102.
doi: 10.1038/srep22102
[8] Guo JH, Ji GZ, Li G, Zhao JN, Yang DL, Zhang GL, Yan FM, Xiu WM ( 2016) The impact of non-Bt genetically modified cotton on the community diversity and food-web structure of arthropods. Cotton Science, 28, 81-86. (in Chinese with English abstract)
[ 郭佳惠, 冀国桢, 李刚, 赵建宁, 杨殿林, 张贵龙, 闫凤鸣, 修伟明 ( 2016) 3种转非抗虫基因棉花田间节肢动物群落的多样性和食物网结构. 棉花学报, 28, 81-86.]
[9] Guo JY, Zhou HX, Wan FH, Han ZJ ( 2007) Structure and seasonal dynamics of arthropods in transgenic cotton fields. Acta Agriculturae Boreali-Sinica, 22(6), 183-189. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2007.06.038
[ 郭建英, 周洪旭, 万方浩, 韩召军 ( 2007) 转基因棉田节肢动物群落结构与动态. 华北农学报, 22(6), 183-189.]
doi: 10.7668/hbnxb.2007.06.038
[10] He HP, Ren ZT, Shen WJ, Liu B, Xue K ( 2018) Effects of transgenic herbicide-tolerate maize on biodiversity of arthropod communities in the fields. Journal of Ecology and Rural Environment, 34, 333-341. (in Chinese with English abstract)
[ 何浩鹏, 任振涛, 沈文静, 刘标, 薛堃 ( 2018) 耐除草剂转基因玉米对田间节肢动物群落多样性的影响. 生态与农村环境学报, 34, 333-341.]
[11] Hilbeck A, Baumgartner M, Fried PM, Bigler F ( 1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 27, 480-487.
doi: 10.1093/ee/27.2.480
[12] International Service for the Acquisition of Agri-biotech Applications ( ISAAA) ( 2017) Global biotechnology / GM crop commercial development trend in 2016. China Biotechnology, 37(4), 1-8. (in Chinese)
[ 国际农业生物技术应用服务组织 ( 2017) 2016年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 37(4), 1-8.]
[13] Kang L, Chen M ( 2013) GMO biosafety management, suggestions and biotech public acceptance in China. Plant Physiology Journal, 49, 637-644. (in Chinese with English abstract)
[ 康乐, 陈明 ( 2013) 我国转基因作物安全管理体系介绍、发展建议及生物技术舆论导向. 植物生理学报, 49, 637-644.]
[14] Li BP, Meng L, Wan FH ( 2002) The impact of insect resistant transgenic crops on natural enemies. Chinese Journal of Biological Control, 18, 97-105. (in Chinese with English abstract)
[ 李保平, 孟玲, 万方浩 ( 2002) 转基因抗虫植物对天敌昆虫的影响. 中国生物防治学报, 18, 97-105.]
[15] Li F, Sun HW, Zhao W, Yang SK, Lu XB ( 2013) Effects of herbicide-tolerant transgenic soybean on biodiversity of arthropod community in field. Shandong Agricultural Sciences, 45(7), 83-86. (in Chinese with English abstract)
[ 李凡, 孙红炜, 赵维, 杨淑珂, 路兴波 ( 2013) 抗除草剂转基因大豆对田间节肢动物群落多样性的影响. 山东农业科学, 45(7), 83-86.]
[16] Li LL, Wang ZY, He KL, Peng YF, Hua L ( 2004) Impact of the insect-resistant transgenic crops on non-target insects. Acta Ecologica Sinica, 24, 1793-1802. (in Chinese with English abstract)
[ 李丽莉, 王振营, 何康来, 彭于发, 花蕾 ( 2004) 转基因抗虫作物对非靶标昆虫的影响. 生态学报, 24, 1793-1802.]
[17] Li Q ( 2011) Species accumulation curves and its application. Chinese Journal of Applied Entomology, 48, 1882-1888. (in Chinese with English abstract)
[ 李巧 ( 2011) 物种累积曲线及其应用. 应用昆虫学报, 48, 1882-1888.]
[18] Li YH, Zhang XJ, Chen XP, Romeis J, Yin XM, Peng YF ( 2015) Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). Scientific Reports, 5, 7679.
doi: 10.1038/srep07679
[19] Liu QS, Li YH, Chen XP, Peng YF ( 2014) Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies. Chinese Journal of Applied Ecology, 25, 2431-2439. (in Chinese with English abstract)
[ 刘清松, 李云河, 陈秀萍, 彭于发 ( 2014) 转基因抗虫植物-植食性昆虫-天敌间化学通讯的研究进展. 应用生态学报, 25, 2431-2439.]
[20] Lu YH, Wu KM, Jiang YY, Xia B, Li P, Feng HQ, Kris AG, Guo YY ( 2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 328, 1151-1154.
doi: 10.1126/science.1187881
[21] Magurran AE ( 2013) Measuring Biological Diversity. Blackwell Publishing, Oxford.
[22] Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM, Lepping MD, Fernandes OA ( 2018) Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS ONE, 13, e0191567.
doi: 10.1371/journal.pone.0191567
[23] Marvier M, Mccreedy C, Regetz J, Kareiva P ( 2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science, 316, 1475-1477.
doi: 10.1126/science.1139208
[24] Naranjo SE, Head G, Dively GP ( 2005) Field studies assessing arthropod nontarget effects in Bt transgenic crops: Introduction. Environmental Entomology, 34, 1178-1180.
[25] Ren ZT, Shen WJ, Liu B, Xue K ( 2017) Effects of transgenic maize on biodiversity of arthropod communities in the fields. Scientia Agricultura Sinica, 50, 2315-2325. (in Chinese with English abstract)
[ 任振涛, 沈文静, 刘标, 薛堃 ( 2017) 转基因玉米对田间节肢动物群落多样性的影响. 中国农业科学, 50, 2315-2325.]
[26] Shen P, Zhang QY, Lin YH, Li WL, Li A, Song GW ( 2016) Thinking to promote the industrialization of genetically modified corn of our country. China Biotechnology, 36(4), 24-29. (in Chinese with English abstract)
doi: 10.13523/j.cb.20160404
[ 沈平, 章秋艳, 林友华, 李文龙, 李昂, 宋贵文 ( 2016) 推进我国转基因玉米产业化的思考. 中国生物工程杂志, 36(4), 24-29.]
doi: 10.13523/j.cb.20160404
[27] Shetty MJ, Chandan K, Krishna HC, Aparna GS ( 2018) Genetically modified crops: An overview. Journal of Pharmacognosy and Phytochemistry, 7, 2405-2410.
[28] Skoková HO, Svobodová Z, Spitzer L, Doležal P, Hussein HM, Sehnal F ( 2015) Communities of ground-dwelling arthropods in conventional and transgenic maize: Background data for the post-market environmental monitoring. Journal of Applied Entomology, 139, 31-45.
doi: 10.1111/jen.2015.139.issue-1-2
[29] Storer NP, Babcock JM, Schlenz M, Meade T, Huckaba RM ( 2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103, 1031-1038.
doi: 10.1603/EC10040
[30] Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y ( 2008) Insect resistance to Bt crops: Evidence versus theory. Nature Biotechnology, 26, 199-202.
doi: 10.1038/nbt1382
[31] Wu L, Zhao QZ, Li DQ, Wang JR, Liu MF, Yang ZL ( 2016) Application of species accumulation curves in study on fruit flies in Nanting River basin. China Plant Protection, 36(8), 46-49. (in Chinese with English abstract)
[ 吴岚, 赵琴植, 李德强, 汪金蓉, 刘梅芳, 杨子林 ( 2016) 物种累积曲线在南汀河流域实蝇调查研究中的应用. 中国植保导刊, 36(8), 46-49.]
[32] Xue K, Zhang WG ( 2008) Non-target effects of transgenic plant: Transgenic Bt cotton. Journal of the Central University of Nationalities (Natural Sciences Edition), 17(Suppl.), 40-50. (in Chinese with English abstract)
[ 薛堃, 张文国 ( 2008) 转基因植物的非靶标效应——以转Bt基因棉为例. 中央民族大学学报(自然科学版), 17(Suppl.), 40-50.]
[33] Yang Y, Li YH, Cao FQ, Cheng LS, Peng YF ( 2014) Progress in the assessment of ecological effects of insect-resistant Bt crops on non-target of Lepidopteran insects. Journal of Biosafety, 23, 224-237. (in Chinese with English abstract)
[ 杨艳, 李云河, 曹凤勤, 程立生, 彭于发 ( 2014) 转Bt基因抗虫作物对鳞翅目非靶标昆虫生态影响的研究进展. 生物安全学报, 23, 224-237.]
[34] Yin JQ, Wu FC, Zhou L, Song XY ( 2017) Impacts of a transgenic insect-resistant maize (Bt-799) containing a Cry1Ac gene on arthropod biodiversity. Journal of Biosafety, 26, 159-167. (in Chinese with English abstract)
[ 尹俊琦, 武奉慈, 周琳, 宋新元 ( 2017) 转Cry1Ac基因抗虫玉米Bt-799对田间节肢动物群落多样性的影响. 生物安全学报, 26, 159-167.]
[35] Zhang XJ, Li YH, Romeis J, Yin XM, Wu KM, Peng YF ( 2014) Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins. PLoS ONE, 9, e85395.
doi: 10.1371/journal.pone.0085395
[36] Zhu Y, Jiang T, Yang YZ ( 2017) Research advances in arthropod community in corn fields. Plant Protection, 43(6), 1-5. (in Chinese with English abstract)
[ 朱莹, 姜韬, 杨益众 ( 2017) 玉米田节肢动物群落研究进展. 植物保护, 43(6), 1-5.]
[37] Zou Y, Sang WG, Wang SZ, Thomas EW, Liu YH, Yu ZR, Wang CL, Axmacher JC ( 2015) Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China. Ecology & Evolution, 5, 531-542.
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[8] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[9] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[10] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[11] Qian Haiyuan,Yu Jianping,Shen Xiaoli,Ding Ping,Li Sheng. Diversity and composition of birds in the Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 76-80.
[12] Dai Yunchuan,Xue Yadong,Zhang Yunyi,Li Diqiang. Summary comments on assessment methods of ecosystem integrity for national parks [J]. Biodiv Sci, 2019, 27(1): 104-113.
[13] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[14] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[15] Zhiyao Tang, Minwei Jiang, Jian Zhang, Xinyue Zhang. Applications of satellite and air-borne remote sensing in biodiversity research and conservation [J]. Biodiv Sci, 2018, 26(8): 807-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Zi-Hui , , GAO Yun-Dong, ZHOU Song-Dong , HE Xing-Jin. Karyotypes of Fifteen Populations of Four Species in Maianthemum (Liliaceae) from Southwestern China[J]. Plant Diversity, 2009, 31(1): 1 -7 .
[2] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[3] Yi-Ben PENG, Cheng ZOU, Hua-Qin GONG, Shu-Nong BAI, Zhi-Hong XU and Yi-Qin LI. Immunolocalization of Arabinogalactan Proteins and Pectins in Floral Buds of Cucumber (Cucumis sativus L.) During Sex Determination[J]. J Integr Plant Biol, 2005, 47(2): .
[4] Cheng Changdu. Proposals on Some Problems to Develop the Agriculture, Forestry, Animal Husbandry and Fishery as well as Sideline Culture from the View-point of Ecological Balance[J]. Chin J Plan Ecolo, 1981, 5(1): 65 -71 .
[5] Yu Shi-Chun, Xiao Pei-Gen. On the Taxonomical State of Fritillaria sulcisquamosa and F. puqiensis[J]. J Syst Evol, 1992, 30(3): 277 -278 .
[6] Jiaqiang SUN, Naoya HIROSE, Xingchun WANG, Pei WEN, Li XUE, Hitoshi SAKAKIBARA,Jianru ZUO. Arabidopsis SOI33/AtENT8 Gene Encodes a Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport In Planta[J]. J Integr Plant Biol, 2005, 47(5): 588 -603 .
[7] CHANG Hong-Li, REN Yi, FENG Lu-Tian. Morphological observations on metamorphosed sepals in Anemone rivularis var. flore-minore (Ranunculaceae)[J]. J Syst Evol, 2005, 43(3): 225 -232 .
[8] He Zhengdan Wang Dezhu Yang Chongren. PHENYLPROPANOID GLYCOSIDES FROM BRANDISIA HANCEI[J]. Plant Diversity, 1990, 12(04): 1 -3 .
[9] ZHOU Da-Xi, YIN Ke, XU Zhi-Hong, XUE Hong-Wei. Effect of Polar Auxin Transport on Rice Root Development[J]. J Integr Plant Biol, 2003, 45(12): 1421 -1427 .
[10] REN Li-Hua, GUO Wang-Zhen and ZHANG Tian-Zhen. Identification of Quantitative Trait Loci (QTLs) Affecting Yield and Fiber Properties in Chromosome 16 in Cotton Using Substitution Line[J]. J Integr Plant Biol, 2002, 44(7): 815 -820 .