生物多样性 ›› 2017, Vol. 25 ›› Issue (4): 418-426.doi: 10.17520/biods.2017015

• 生物编目 • 上一篇    下一篇

被子植物APG分类系统评论

王伟1, 2, 张晓霞1, 2, 陈之端1, 路安民1, *()   

  1. 1 中国科学院植物研究所系统与进化植物学国家重点实验室, 北京 100093
    2 中国科学院大学, 北京 100049
  • 收稿日期:2017-01-13 接受日期:2017-03-15 出版日期:2017-04-20
  • 通讯作者: 路安民 E-mail:anmin@ibcas.ac.cn
  • 基金项目:
    基金项目: 国家自然科学基金(31470315, 31590822)、国家重点基础研究发展计划(2014CB954100)和中国科学院青年创新促进会专项

Comments on the APG’s classification of angiosperms

Wei Wang1, 2, Xiaoxia Zhang1, 2, Zhiduan Chen1, Anming Lu1, *()   

  1. 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 2 University of the Chinese Academy of Sciences, Beijing 100049
    1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 2 University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2017-01-13 Accepted:2017-03-15 Online:2017-04-20
  • Contact: Lu Anming E-mail:anmin@ibcas.ac.cn

随着植物分子系统学的兴起, 被子植物系统发育研究取得了举世瞩目的进展。被子植物系统发育组提出了基于DNA证据的被子植物在目、科分类阶元上的分类系统, 简称APG系统。本文简要概括了APG系统的主要成就: (1)验证了被子植物分类系统的可重复性和可预言性; (2)解决了一些依据形态学性状未能确定的类群的系统位置; (3)证明了将被子植物一级分类分为双子叶植物和单子叶植物的不自然性; (4)证实了单沟花粉和三沟花粉在被子植物高级分类单元划分中的重要性; (5)发现雄蕊的向心发育和离心发育在多雄蕊类群中是多次发生的, 不应作为划分纲或亚纲的重要依据; (6)支持基于形态学(广义)性状划分的大多数科是自然的; (7)将一些长期认为自然的科四分五裂。同时, 我们指出了尚需深入研究的几个问题: (1)如何将以分子数据建立的系统和以综合形态学证据建立的系统相协调; (2)依据APG系统的研究结果需要创立新的形态演化理论; (3)只以“单系群”作为划分科、目的依据值得商榷; (4)APG系统中一些目的分类没有可信的形态学共衍征; (5)依据APG系统需要做出一个自然系统的目、科检索表和目、科的特征集要。此外, 我们对以亚洲, 特别是东亚为分布中心的一些类群的系统关系或分类等级提出建议, 包括八角科、芒苞草科、水青树科、火筒树科、马尾树科、七叶树科、槭树科、伯乐树科应独立为科, 山茱萸科(广义)应分为山茱萸科(狭义)和蓝果树科(广义)。

关键词: 被子植物, 分子系统学, 分类, 形态学, 单系, 共衍征

With the rise of plant molecular systematics, tremendous progress has been made in understanding phylogenetic relationships within angiosperms. With the basic phylogenetic framework of angiosperms established, a DNA phylogeny-based angiosperm classification system at the order and familial levels was proposed by the Angiosperm Phylogeny Group (APG) in 1998 and has been updated three times. In this paper, we summarize the major achievements of the APG system as follows: (1) testing the repeatability and predictability of the APG system for angiosperms; (2) resolving the systematic positions of some segregate taxa which were not placed based on morphological characters; (3) proving that it is not reasonable to first divide angiosperms based on cotyledon character; (4) demonstrating the importance of tricolpate/tricolporate pollen and derivatives for angiosperm classification; (5) finding that the centrifugal development of stamens in polyandrous groups have evolved independently many times and should not be used to delimit class or subclass of angiosperms; (6) supporting that most of the families delimited by broad morphological characters are natural; and (7) separating some families which are traditionally regarded as natural. We then point out potential problems that need to be resolved in the future, including: (1) how to harmonize the APG system and the morphology-based systems; (2) establishing new morphological evolution theories on the basis of the APG system; (3) determining whether it is enough to only use “monophyly” as a criterion to circumscribe orders and families; (4) determining morphological synapormorphies of those orders in the APG system; and (5) how to best compile a key to distinguish the orders and families of the APG system and to list their diagnostic characters for orders and families. In addition, we propose suggestions for the phylogenetic relationships and taxonomic status of some taxa mainly distributed in Asia, specifically East Asia, including Illiciaceae, Acanthochlamydaceae, Tetracentraceae, Leeaceae, Rhoipteiaceae, Hippocastenaceae, Aceraceae, Bretschneideraceae as familial status, and dividing Cornaceae sensu lato into Cornaceae sensu stricto and Nyssaceae sensu lato.

Key words: angiosperms, molecular systematics, classification, morphology, monophyly, synapormorphy

图1

被子植物APG IV (2016)系统的目间系统关系。虚线表示核/线粒体树与叶绿体树冲突; 标灰色的目含有多雄蕊离心发育的类群; 花粉和子叶性状标在系统树的右边。"

图2

比较APG IV (2016)系统与Takhtajan (2009)系统中金虎尾目的范围。括号中的数字示Takhtajan (2009)系统中目的序号。"

图3

比较APG IV(2016)系统与Takhtajan(2009)系统中虎耳草目的范围。锁阳科的位置根据Bellot等(2016)的结果。括号中的数字示Takhtajan(2009)系统中目的序号。"

1 APG (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden, 85, 531-553.
2 APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141, 399-436.
3 APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
4 APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.
5 Bellot S, Cusimano N, Luo S, Sun G, Zarre S, Gröger A, Temsch E, Renner S (2016) Assembled plastid and mitochondrial genomes, as well as nuclear genes, place the parasite family Cynomoriaceae in the Saxifragales. Genome Biology and Evolution, 8, 2214-2230.
6 Cardinal-McTeague WM, Sytsma KJ, Hall JC (2016) Biogeography and diversification of Brassicales: a 103 million year tale. Molecular Phylogenetics and Evolution, 99, 204-224.
7 Carlsward BS, Judd WS, Soltis DE, Manchester S, Soltis PS (2011) Putative morphological synapomorphies of Saxifragales and their major subclades. Journal of the Botanical Research Institute of Texas, 5, 179-196.
8 Chase MW, Fay MF, Savolainen V (2000) Higher-level classification in the angiosperms: new insights from the perspective of DNA sequence data. Taxon, 49, 685-704.
9 Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price R, Hills HG, Qiu Y-L, Kron KA, Retting JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham S, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden, 80, 528-580.
10 Chen ZD, Yang T, Lin L, Lu LM, Li HL, Sun M, Liu B, Chen M, Niu YT, Ye JF, Cao ZY, Liu HM, Wang XM, Wang W, Zhang JB, Meng Z, Cao W, Li JH, Wu SD, Zhao HL, Liu ZJ, Du ZY, Wang QF, Guo J, Tan XX, Su JX, Zhang LJ, Yang LL, Liao YY, Li MH, Zhang GQ, Chung SW, Zhang J, Xiang KL, Li RQ, Soltis DE, Soltis PS, Zhou SL, Ran JH, Wang XQ, Jin XH, Chen YS, Gao TG, Li JH, Zhang SZ, Lu AM, China Phylogeny Consortium (2016) Tree of life for the genera of Chinese vascular plants. Journal of Systematics and Evolution, 54, 277-306.
11 Christenhusz MJM, Vorontsova MS, Fay MF, Chase MW (2015) Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Botanical Journal of the Linnean Society, 178, 501-528.
12 Cronquist A (1981) An Integrated System of Classification of the Flowering Plants. Columbia University Press, New York.
13 Dahlgren R (1983) General aspects of angiosperm evolution and macro-systematics. Nordic Journal of Botany, 3, 119-149.
14 Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests. The American Naturalist, 165, E36-E65.
15 Donoghue MJ, Doyle JA (1989) Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In: Evolution, Systematics, and Fossil History of the Hamamelidae, vol. 1 (eds Crane PR, Blackmore S), pp. 17-45. Clarendon Press, Oxford, UK.
16 Doyle JA, Hotton CL (1991) Diversification of early angiosperm pollen in a cladistic context. In: Pollen and Spores: Patterns of Diversification (eds Blackmore S, Barnes SH), pp. 165-195. Clarendon Press, Oxford, UK.
17 Feng M, Fu DZ, Liang HX, Lu AM (1995) Floral morphogenesis of Aquilegia L. (Ranunculaceae). Acta Botanica Sinica, 37, 791-794. (in Chinese with English abstract)
[冯旻, 傅德志, 梁汉兴, 路安民 (1995) 耧斗菜属花部形态发生. 植物学报, 37, 791-794.]
18 Friis EM, Crane PR, Pedersen KR (2011) Early Flowers and Angiosperm Evolution. Cambridge University Press, Cambridge, UK.
19 Handel-Mazzetti H (1932) Rhoipteaceae, eine nenu Familie der Monochlamydeen. Feddes Repertorium, 30, 75-80.
20 Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA (2005) Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences. Systematic Botany, 30, 366-382.
21 Judd WS, Olmstead RG (2004) A survey of tricolpate (eudicot) phylogenetic relationships. American Journal of Botany, 91, 1627-1644.
22 Judd WS, Sanders RW, Donoghue MJ (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Papers in Botany, 5, 1-51.
23 Lu AM (1989) Explanatory notes on R. Dahlgren’s system of classification of the angiosperms. Cathaya, 1, 149-160.
24 Lu AM, Zhang ZY (1990) The differentiation, evolution and systematic relationship of Juglandales. Acta Phytotaxonomica Sinica, 28, 96-102. (in Chinese with English abstract)
[路安民, 张志耘 (1990) 胡桃目的分化、进化和系统关系. 植物分类学报, 28, 96-102.]
25 Melchior H (1964) A. Engler’s Syllabus der Pflanzenfamilien Band II. Gebrüder Borntraeger, Berlin-Nikolassee.
26 Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences, USA, 104, 19363-19368.
27 Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD (2009) Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. American Journal of Botany, 96, 67-82.
28 Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, Marchant AD, Briggs BG, Graham SW (2007) Hydatellaceae identified as a new branch near the base of the angiosperm. Nature, 446, 312-315.
29 Soltis DE, Moore MJ, Burleigh G, Soltis PS (2009) Molecular markers and concepts of plant evolutionary relationships: Progress, promise and future prospects. Critical Reviews in Plant Sciences, 28, 1-15.
30 Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 12, July2012.
31 Stuessy TF (2010) Paraphyly and the origin and classification of angiosperms. Taxon, 59, 689-693.
32 Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science, 296, 899-904.
33 Takhtajan A (2009) Flowering Plants, 2nd edn. Springer, Heidelberg.
34 Thorne RF (1992) Classification and geography of the flowering plants. Botantical Review, 58, 225-348.
35 Wang W, Lu AM, Ren Y, Chen ZD (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics, 11, 81-110.
36 Wu ZY, Lu AM, Tang YC, Chen ZD, Li DZ (2003) The families and genera of angiosperms in China: a comprehensive analysis. Science Press, Beijing. (in Chinese)
[吴征镒, 路安民, 汤彦承, 陈之端, 李德铢 (2003) 中国被子植物科属综论. 科学出版社, 北京.]
37 Xiang XG, Wang W, Li RQ, Lin L, Liu Y, Zhou ZK, Li ZY, Chen ZD (2014) Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspectives in Plant Ecology, Evolution and Systematics, 16, 101-110.
38 Zhang ZY, Lu AM, Wen J (1994) Embryology of Ehoiptelea chiliantha (Rhoipteaceae) and its systematic relationship. Cathaya, 6, 57-66.
[1] 李帅锋 郎学东 黄小波 王艳红 刘万德 徐崇华 苏建荣. (2020) 云南普洱30hm2季风常绿阔叶林动态监测样地群丛数量分类. 植物生态学报, 44(预发表): 0-0.
[2] 王鑫 刘仲健 刘文哲 廖文波 张鑫 刘忠 胡光万 郭学民 王亚玲. (2020) 走出歌德的阴影: 迈向更加科学的植物系统学. 植物学报, 55(4): 0-0.
[3] 顾钰峰,金冬梅,刘保东,戴锡玲,严岳鸿. (2020) 蕨类植物的鳞片特征及演化I: 凤尾蕨科. 植物学报, 55(2): 163-176.
[4] 方精云 郭柯 王国宏 唐志尧 谢宗强 沈泽昊 王仁卿 强胜 梁存柱 达良俊 于丹. (2020) 《中国植被志》的植被分类系统、植被类型划分及编排体系. 植物生态学报, 44(2): 0-0.
[5] 郭柯 方精云 王国宏 唐志尧 谢宗强 沈泽昊 王仁卿 强胜 梁存柱 达良俊 于丹. (2020) 中国植被分类系统修订方案. 植物生态学报, 44(2): 0-0.
[6] 王国宏 方精云 郭柯 谢宗强 唐志尧 王仁卿 沈泽昊 王襄平 王德利 强胜 于丹 彭少麟 达良俊 刘庆 梁存柱. (2020) 《中国植被志》研编的内容与规范. 植物生态学报, 44(2): 0-0.
[7] 王剀,任金龙,陈宏满,吕植桐,郭宪光,蒋珂,陈进民,李家堂,郭鹏,王英永,车静. (2020) 中国两栖、爬行动物更新名录. 生物多样性, 28(2): 189-218.
[8] 王伟,刘阳. (2020) 植物生命之树重建的现状、问题和对策建议. 生物多样性, 28(2): 176-188.
[9] 李紫晶, 莎娜, 史亚博, 佟旭泽, 董雷, 张小青, 孙蔷, 梁存柱. (2019) 内蒙古西鄂尔多斯地区半日花荒漠群落特征及其分类. 植物生态学报, 43(9): 806-816.
[10] 赵凤云, 李玉, TomHsiang, 刘淑艳. (2019) 小兴安岭两种林地的黏菌物种多样性. 生物多样性, 27(8): 896-902.
[11] 孔嘉鑫, 张昭臣, 张健. (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27(7): 796-812.
[12] 蒋凯文, 潘勃, 田斌. (2019) 近年来中国国产豆科的属级分类学变动. 生物多样性, 27(6): 689-697.
[13] 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. (2019) 青海森林生态系统中灌木层和土壤生态化学计量特征. 植物生态学报, 43(4): 352-364.
[14] 唐康,杨若林. (2019) 大豆蛋白编码基因起源与进化. 植物学报, 54(3): 316-327.
[15] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. (2019) 中国沿海洛氏角毛藻复合群的多样性组成及地理分布. 生物多样性, 27(2): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed