生物多样性 ›› 2013, Vol. 21 ›› Issue (6): 699-708.doi: 10.3724/SP.J.1003.2013.10082

• • 上一篇    下一篇

连江浮游动物多样性的空间分布

高原, 赖子尼*(), 李捷, 王超, 曾艳艺, 刘乾甫, 杨婉玲   

  1. 中国水产科学研究院珠江水产研究所, 广州 510380
  • 收稿日期:2013-04-03 接受日期:2013-09-03 出版日期:2013-11-20
  • 通讯作者: 赖子尼 E-mail:znlai01@163.com
  • 基金项目:
    公益性行业(农业)科研专项项目(200903048-5);科技部公益专项(2005DIB3J023)

Spatial pattern of zooplankton diversity in Lianjiang River, Guangdong Province, China

Yuan Gao, Zini Lai*(), Jie Li, Chao Wang, Yanyi Zeng, Qianfu Liu, Wanling Yang   

  1. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380
  • Received:2013-04-03 Accepted:2013-09-03 Online:2013-11-20
  • Contact: Lai Zini E-mail:znlai01@163.com

修建水坝极大地影响了水体的自净能力, 对渔业资源和水生生物多样性造成了严重影响。为分析人为建坝对浮游动物群落结构的影响, 作者于2007年10月开展了针对连江12个梯级水坝影响江段的大规模的水生态调查, 分析了12个代表样点浮游动物各大类群的种类分布和优势种的组成, 以及浮游动物丰度、生物量和多样性指数的空间分布, 探讨了浮游动物群落结构与环境因子的关系。调查分别记录到原生动物、轮虫类、枝角类及桡足类19、25、17及15种, S2-S4采样点种类数最多, S5采样点最少。连江浮游动物的优势种有21种, 其中原生动物5种, 轮虫类9种, 枝角类和桡足类分别为4种和3种, 代表种类有多态喇叭虫(Stentor polymorphrus)、萼花臂尾轮虫(Brachionus calyciflorus)、长额象鼻溞(Bosmina longirostris)及胸饰外剑水蚤(Ectocyclops phaleratus)等。浮游动物的种群丰度在921.00-2,160.35 ind./L范围内波动, S5采样点最高, S1采样点最低; 生物量在0.198-0.699 mg/L范围内波动, S5采样点最高, S1采样点最低。浮游动物各大类群的Margalef物种丰富度指数、Shannon-Wiener多样性指数及Pielou均匀度指数基本呈现上游较高、中下游较低的分布特征。PCA分析表明: 连江浮游动物群落与氨氮、高锰酸盐指数、pH和透明度等环境因素显著相关。由此可见, 连江梯级开发形成的不同生境中营养盐等诸多因素的显著差异是影响浮游动物多样性空间分布的重要原因。

关键词: 水坝, 浮游动物, 优势种, 丰度, 生物量, 群落结构, 空间分布

Twelve dams have been built along the Lianjiang River, the largest tributary of the Beijiang River in Guangdong Province, China. To understand the spatial distribution of zooplankton diversity developing after the establishment of these dams and cascades, and also the effects that these dams have had on zooplankton community structure, a study was conducted on the aquatic ecosystem in October 2007. Twelve sampling sites (S1-S12) along the main stream of Lianjiang River were established to study the composition of different groups of zooplankton and dominant species, the spatial distribution of abundance, biomass, diversity index of zooplankton as well as the zooplankton community, and relationships with environmental factors. Records showed that there were 76 species of zooplankton, which included 19 species of protozoa, 25 species of rotifer, 17 species of cladocera and 15 species of copepoda. Species numbers of zooplankton were greatest in sites S2 to S4, and lowest in S5. The dominant species were Stentor polymorphrus, Brachionus calyciflorus, Bosmina longirostris and Ectocyclops phaleratus, and significant differences in the distribution of dominant species existed between sampling points. Abundance of zooplankton fluctuated between 921.00 and 2,160.35 individuals/L, with highest abundance occurring in S5 and lowest in S1. Biomass of zooplankton fluctuated between 0.198 and 0.699 mg/L, with the highest value occurring in S5 and the lowest in S1. Generally, the values of Margalef species richness index, Shannon-Wiener diversity index and Pielou Evenness index of different zooplankton groups showed higher in upstream and lower in middle and downstream. PCA analysis showed a significant association between zooplankton community and environmental factors such as ammonia nitrogen, permanganate index, pH and transparence. We concluded that significant differences in ecological factors between habitats, such as nutrients, caused by cascade development, were the key factors determining the spatial distribution of zooplankton diversity in the Lianjiang river.

Key words: dam, zooplankton, dominant species, abundance, biomass, community structure, spatial pattern

图1

连江采样点分布图"

图2

连江水环境因子的空间变化"

表1

连江各采样点浮游动物物种数"

种数
Species number
采样点 Sampling sites
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
原生动物 Protozoa 7 7 7 7 4 6 6 6 5 5 5 5
轮虫类 Rotatoria 9 11 13 14 8 13 13 13 12 11 10 10
枝角类 Cladocera 7 8 7 6 2 6 5 5 5 4 4 3
桡足类 Copepoda 7 7 6 6 3 5 5 4 3 4 3 3
浮游动物 Zooplankton 30 33 33 33 17 30 29 28 25 24 22 21

表2

连江各采样点浮游动物群落相似性系数"

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
S2 0.26
S3 0.31 0.38
S4 0.26 0.38 0.43
S5 0.18 0.30 0.32 0.35
S6 0.22 0.33 0.37 0.40 0.31
S7 0.26 0.31 0.44 0.41 0.39 0.37
S8 0.23 0.41 0.45 0.45 0.45 0.49 0.50
S9 0.22 0.25 0.38 0.38 0.45 0.38 0.50 0.47
S10 0.20 0.29 0.35 0.46 0.46 0.32 0.47 0.44 0.53
S11 0.18 0.30 0.30 0.27 0.30 0.33 0.38 0.28 0.42 0.39
S12 0.19 0.28 0.31 0.31 0.41 0.28 0.35 0.32 0.48 0.45 0.72

表3

连江浮游动物优势种"

优势种
Dominant species
优势度
Dominance
原生动物 Protozoa
多态喇叭虫 Stentor polymorphrus 0.209
旋回侠盗虫 Strobilidium gyrans 0.206
王氏似铃壳虫 Tintinnopsis wangi 0.071
腔裸口虫 Holophrya atra 0.026
大草履虫 Paramecium caudatum 0.025
轮虫类 Rotatoria
萼花臂尾轮虫 Brachionus calyciflorus 0.252
针簇多肢轮虫 Polyarthra trigla 0.142
螺形龟甲轮虫 Keratella cochlearis 0.117
镰状臂尾轮虫 Brachionus falcatus 0.049
角突臂尾轮虫 B. angularis 0.040
长足轮虫 Rotaria neptunia 0.039
十指平甲轮虫 Platyias militaris 0.039
浦达臂尾轮虫 Brachionus budapestiensis 0.026
裂足臂尾轮虫 B. diversicornis 0.025
枝角类 Cladocera
长额象鼻溞 Bosmina longirostris 0.145
多刺裸腹溞 Moina macrocopa 0.046
脆弱象鼻溞 Bosmina fatalis 0.039
圆形盘肠溞 Chydorus sphaericus 0.020
桡足类 Copepoda
胸饰外剑水蚤 Ectocyclops phaleratus 0.087
汤匙华哲水蚤 Sinocalanus dorrii 0.042
模式有爪猛水蚤 Onychocamptus mohammed 0.029

图3

连江浮游动物丰度与采样点的主成分分析二维排序图"

图4

连江浮游动物丰度和生物量的空间分布"

图5

连江浮游动物物种丰富度指数、多样性指数及均匀度指数的空间分布"

图6

连江浮游动物丰度与环境因子的主成分分析排序图"

表4

连江浮游动物主要优势种丰度、环境因子前两个主成分分析排序轴与环境因子之间的相关系数"

SPAX1 SPAX2 SPAX3 SPAX4 ENAX1 ENAX2 ENAX3 ENAX4
SPAX2 0
SPAX3 0 0
SPAX4 0 0 0
ENAX1 0.97 0.02 -0.05 -0.13
ENAX2 0.02 0.68 0.13 0.06 0.02
ENAX3 -0.04 0.09 0.97 -0.15 -0.05 0.13
ENAX4 -0.16 0.05 -0.18 0.78 -0.16 0.07 -0.19
透明度 Transparence -0.39 0.17 0.12 -0.34 -0.41 0.24 0.13 -0.43
pH -0.43 0.15 0.81 -0.04 -0.44 0.22 0.84 -0.05
溶解氧 Dissolved oxygen -0.30 -0.10 0.43 -0.10 -0.31 -0.15 0.45 -0.12
总磷 Total phosphorus -0.13 0.02 -0.31 0.31 -0.14 0.02 -0.32 0.39
总氮 Total nitrogen 0.20 0.23 0.31 0.50 0.21 0.34 0.32 0.64
氨氮 Ammonia nitrogen 0.72 -0.17 0.26 -0.23 0.74 -0.24 0.27 -0.30
高锰酸盐指数 Permanganate index 0.39 -0.17 0.04 0.02 0.40 -0.25 0.04 0.03
硅酸盐 Silicate -0.02 0.17 0.12 0.57 -0.02 0.25 0.12 0.74
透明度
Transparence
pH 溶解氧
Dissolved
oxygen
总磷
Total
phosphorus
总氮
Total
nitrogen
氨氮
Ammonia nitrogen
高锰酸盐指数 Permanganate
index
透明度 Transparence
pH 0.42
溶解氧 Dissolved oxygen 0.64 0.63
总磷 Total phosphorus -0.50 -0.16 -0.58
总氮 Total nitrogen -0.30 0.36 0.16 0.13
氨氮 Ammonia nitrogen -0.25 -0.17 -0.10 -0.50 0.01
高锰酸盐指数 Permanganate index -0.58 -0.36 -0.17 0.05 -0.01 0.18
硅酸盐 Silicate -0.39 0.05 -0.31 0.39 0.42 -0.08 0.16
1 Badosa A, Boix D, Brucet S, López-Flores R, Gascón S, Quintana XD (2007) Zooplankton taxonomic and size diversity in Mediterranean coastal lagoons (NE Iberian Peninsula): influence of hydrology, nutrient composition, food resource availability and predation. Estuarine,Coastal and Shelf Science, 71, 335-346.
2 Chen XM (陈雪梅) (1981) Biomass calculation of freshwater Copepoda.Acta Hydrobiologica Sinica(水生生物学集刊), 7, 397-408. (in Chinese with English abstract)
3 Du P (杜萍), Liu JJ (刘晶晶), Xu XQ (徐晓群), Chen QZ (陈全震), Zeng JN (曾江宁), Jiang ZB (江志兵), Wang Q (王琪) (2011) Comparison studies on zooplankton ecological characteristics of Xiangshan Bay in different habitats in winter.Fisheries Science & Technology Information(水产科技情报), 38, 92-99. (in Chinese)
4 Echaniz SA, Vignatti AM, De Paggi SJ, Paggi JC, Pilati A (2006) Zooplankton seasonal abundance of South American saline shallow lakes.International Review of Hydrobiology, 91, 86-100.
5 Havel JE, Medley KA, Dickerson KD, Angradi TR, Bolgrien DW, Bukaveckas PA, Jicha TM (2009) Effect of main-stem dams on zooplankton communities of the Missouri River (USA).Hydrobiologia, 628, 121-135.
6 Huang XF (黄祥飞) (1981) Application of the simplified method of weight determination to various species of planktonic rotifers in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica(水生生物学集刊), 7, 409-416. (in Chinese with English abstract)
7 Huang XF (黄祥飞), Hu CY (胡春英) (1986) Body length-weight regression relationship in freshwater cladocera. In: Symposium on Crustacean Research in China (甲壳动物学论文集) (ed. Editorial Committee of Symposium on Crustacea)(甲壳动物学论文集编辑委员会)), pp. 147-157. Science Press, Beijing. (in Chinese with English abstract )
8 Ji HH (纪焕红), Ye SF (叶属峰) (2006) Ecological distribution characteristics of zooplankton and its relationship with environmental factors in the Changjiang River estuary.Marine Sciences(海洋科学), 30(6), 23-30. (in Chinese with English abstract)
9 Li J (李捷), Luo JR (罗建仁), Li XH (李新辉), Tan XC (谭细畅), Wang C (王超), Guo SC (郭绍常) (2007) Investigation of fish resources and analysis of resources decline along Lianjiang River.Freshwater Fisheries(淡水渔业), 37(3), 49-53. (in Chinese with English abstract)
10 Li J (李捷), Li XH (李新辉), Jia XP (贾晓平), Tan XC (谭细畅), Wang C (王超), Li YF (李跃飞), Shao XF (邵晓风) (2012) Relationship between fish community diversity and environmental factors in the Lianjiang River, Guangdong, China. Acta Ecologica Sinica(生态学报), 32, 5795-5805. (in Chinese with English abstract)
11 Ma KP (马克平) (1994) The methods of biotic community diversity measurement. In: Principles and Methodologies of Biodiversity Studies (生物多样性研究的原理与方法)(ed. Biodiversity Committee, Chinese Academy of Sciences (中国科学院生物多样性委员会), pp. 147-157. China Science and Technology Press, Beijing. (in Chinese)
12 Margalef DR (1958) Information theory in ecology.General Systems, 3, 36-71.
13 Mei XX (梅象信), Xu ZH (徐正会), Zhang JL (张继玲), Zhao YX (赵宇翔) (2006) Ant species diversity on east slope of Xishan Forest Park in Kunming. Forest Research(林业科学研究), 19, 170-176. (in Chinese with English abstract)
14 Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-Dimethyly formamide.Plant Physiology, 65, 478-479.
15 Pan JH (潘炯华) (1987) Fishery Resources of the Beijiang River in Pearl River System (珠江水系北江渔业资源). Guangdong Science & Technology Press, Guangzhou. (in Chinese)
16 Pielou EC (1966) Species-diversity and pattern-diversity in the study of ecological succession.Journal of Theoretical Biology, 10, 370-383.
17 Shannon CE, Weaver W (1963) The Mathematical Theory of Communication. University of Illinois Press, Urbana.
18 State Environmental Protection (国家环境保护总局) (2002) Water and Wastewater Monitoring Analysis Method (4th Edition) (水和废水监测分析方法, 第4版). China Environmental Science Press, Beijing. (in Chinese)
19 Tavernini S, Mura G, Rossetti G (2005) Factors influencing the seasonal phenology and composition of zooplankton communities in mountain temporary pools.International Review of Hydrobiology, 90, 358-375.
20 Wang C (王超), Li XH (李新辉), Lai ZN (赖子尼), Tan XC (谭细畅), Li J (李捷), Li YF (李跃飞) (2010) Preliminary study on phytoplankton community structure of Lianjiang.Guangdong Agricultural Sciences(广东农业科学), 37(3), 168-172. (in Chinese with English abstract)
21 Wu JX (吴建新), Yan BL (阎斌伦), Feng ZH (冯志华), Li Y (李玉), Xu JT (徐加涛), Li SH (李士虎), Shen X (申欣) (2011) Zooplankton ecology near the Tianwan Nuclear Power Station.Acta Ecologica Sinica(生态学报), 31, 6902-6911. (in Chinese with English abstract)
22 Wu L (吴利), Feng WS (冯伟松), Zhang TL (张堂林), Yu YH (余育和) (2011) Characteristics of zooplankton community and its relation to environmental factors in Lake Wuhu in spring and autumn.Journal of Hydroecology(水生态学杂志), 32(2), 31-37. (in Chinese with English abstract)
23 Xie JJ (谢进金), Xu YQ (许友勤), Chen YS (陈寅山), Dai CJ (戴聪杰), Chen ZY (陈朝阳) (2005) The relationship of community structure of zooplankton and the water pollution of the Jinjiang River Valley.Chinese Journal of Zoology(动物学杂志), 40(5), 8-13. (in Chinese with English abstract)
24 Xu ZL (徐兆礼), Wang YL (王云龙), Chen YQ (陈亚瞿), Shen HT (沈焕庭) (1995) An ecological study on zooplankton in maximum turbid zone of estuarine area of Changjiang (Yangtze) River.Journal of Fishery Sciences of China(中国水产科学), 2(1), 39-48. (in Chinese with English abstract)
25 Zeng Y (曾阳), Fu XE (付秀娥), Miao MS (苗明升), Fu RS (付荣恕), Chen LL (陈琳琳), Ren ZM (任宗明), Wang YW (王亚炜), Wei YS (魏源送) (2012) Water quality assessment of Wenyuhe River based on the cross-correlation analysis on the diversity of macro-zooplankton and water parameters.Asian Journal of Ecotoxicology(生态毒理学报), 2(7), 162-170. (in Chinese with English abstract)
26 Zhang ZS (章宗涉), Huang XF (黄祥飞) (1995) Studying Methods on Freshwater Plankton (淡水浮游生物研究方法). Science Press, Beijing. (in Chinese)
27 Zou M (邹鸣) (2005) The hydrological characteristics of Lianjiang River Basin.Guangdong Water Resources and Hydropower(广东水利水电), (6), 74-75. (in Chinese)
[1] 方运霆 刘冬伟 朱飞飞 图影 李善龙 黄韶楠 全智 王盎. (2020) 氮稳定同位素技术在陆地生态系统氮循环研究中的应用. 植物生态学报, 44(生态技术与方法专辑): 0-0.
[2] 赵志霞,赵常明,邓舒雨,申国珍,谢宗强,熊高明,李俊清. (2020) 重度砍伐后极小种群野生植物崖柏群落结构动态. 生物多样性, 28(3): 333-339.
[3] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[4] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[5] 苗百岭, 梁存柱, 史亚博, 梁茂伟, 刘钟龄. (2019) 降水变化对内蒙古典型草原地上生物量的影响. 植物生态学报, 43(7): 557-565.
[6] 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. (2019) 水分和养分添加对羊草功能性状和地上生物量的影响. 植物生态学报, 43(6): 501-511.
[7] 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. (2019) 全球森林土壤微生物生物量碳氮磷化学计量的季节动态. 植物生态学报, 43(6): 532-542.
[8] 刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强. (2019) 神农架常绿落叶阔叶混交林碳氮磷化学计量比. 植物生态学报, 43(6): 482-489.
[9] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27(6): 648-657.
[10] 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. (2019) 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征. 生物多样性, 27(4): 439-448.
[11] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. (2019) 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局. 生物多样性, 27(2): 177-185.
[12] 杨陆飞, 陈琳琳, 李晓静, 周政权, 刘博, 宋博, 李秉钧, 李宝泉. (2019) 烟台牟平海洋牧场季节性低氧对大型底栖动物群落的生态效应. 生物多样性, 27(2): 200-210.
[13] 温纯,金光泽. (2019) 功能多样性对典型阔叶红松林生产力的影响. 植物生态学报, 43(2): 94-106.
[14] 刘硕然,杨道德,李先福,谭路,孙军,和晓阳,杨文书,任国鹏,Davide Fornacca,蔡庆华,肖文. (2019) 滇西北高山微水体与溪流生境底栖动物多样性和环境特征. 生物多样性, 27(12): 1298-1308.
[15] 唐立涛, 刘丹, 罗雪萍, 胡雷, 王长庭. (2019) 青海省森林土壤磷储量及其分布格局. 植物生态学报, 43(12): 1091-1103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed